Spaces:
Running
on
L40S
Running
on
L40S
import gradio as gr | |
import spaces | |
from gradio_litmodel3d import LitModel3D | |
import os | |
import time | |
from os import path | |
import shutil | |
from datetime import datetime | |
from safetensors.torch import load_file | |
from huggingface_hub import hf_hub_download | |
import torch | |
import numpy as np | |
import imageio | |
import uuid | |
from easydict import EasyDict as edict | |
from PIL import Image | |
from trellis.pipelines import TrellisImageTo3DPipeline | |
from trellis.representations import Gaussian, MeshExtractResult | |
from trellis.utils import render_utils, postprocessing_utils | |
from diffusers import FluxPipeline | |
from typing import Tuple, Dict, Any # Tuple import 추가 | |
# 파일 상단의 import 문 | |
import transformers | |
from transformers import pipeline as transformers_pipeline | |
from transformers import Pipeline | |
import gc # 파일 상단에 추가 | |
# 전역 변수 초기화 | |
class GlobalVars: | |
def __init__(self): | |
self.translator = None | |
self.trellis_pipeline = None | |
self.flux_pipe = None | |
g = GlobalVars() | |
def initialize_models(device): | |
try: | |
print("Initializing models...") | |
# 3D 생성 파이프라인 | |
g.trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained( | |
"JeffreyXiang/TRELLIS-image-large" | |
) | |
print("TrellisImageTo3DPipeline loaded successfully") | |
# 이미지 생성 파이프라인 | |
print("Loading flux_pipe...") | |
g.flux_pipe = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
torch_dtype=torch.bfloat16, | |
device_map="balanced" | |
) | |
print("FluxPipeline loaded successfully") | |
# Hyper-SD LoRA 로드 | |
print("Loading LoRA weights...") | |
lora_path = hf_hub_download( | |
"ByteDance/Hyper-SD", | |
"Hyper-FLUX.1-dev-8steps-lora.safetensors", | |
use_auth_token=HF_TOKEN | |
) | |
g.flux_pipe.load_lora_weights(lora_path) | |
g.flux_pipe.fuse_lora(lora_scale=0.125) | |
print("LoRA weights loaded successfully") | |
# 번역기 초기화 | |
print("Initializing translator...") | |
g.translator = transformers_pipeline( | |
"translation", | |
model="Helsinki-NLP/opus-mt-ko-en", | |
device=device | |
) | |
print("Model initialization completed successfully") | |
except Exception as e: | |
print(f"Error during model initialization: {str(e)}") | |
raise | |
# CUDA 메모리 관리 설정 | |
torch.cuda.empty_cache() | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.benchmark = True | |
# 환경 변수 설정 | |
# 환경 변수 설정 | |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" | |
os.environ['SPCONV_ALGO'] = 'native' | |
os.environ['SPARSE_BACKEND'] = 'native' | |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1' | |
os.environ['XFORMERS_FORCE_DISABLE_TRITON'] = '1' | |
os.environ['XFORMERS_ENABLE_FLASH_ATTENTION'] = '1' | |
os.environ['TORCH_CUDA_MEMORY_ALLOCATOR'] = 'native' | |
os.environ['PYTORCH_NO_CUDA_MEMORY_CACHING'] = '1' | |
# CUDA 초기화 방지 | |
torch.set_grad_enabled(False) | |
# Hugging Face 토큰 설정 | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if HF_TOKEN is None: | |
raise ValueError("HF_TOKEN environment variable is not set") | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = "/tmp/Trellis-demo" | |
os.makedirs(TMP_DIR, exist_ok=True) | |
# Setup and initialization code | |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".") | |
gallery_path = path.join(PERSISTENT_DIR, "gallery") | |
os.environ["TRANSFORMERS_CACHE"] = cache_path | |
os.environ["HF_HUB_CACHE"] = cache_path | |
os.environ["HF_HOME"] = cache_path | |
os.environ['SPCONV_ALGO'] = 'native' | |
torch.backends.cuda.matmul.allow_tf32 = True | |
class timer: | |
def __init__(self, method_name="timed process"): | |
self.method = method_name | |
def __enter__(self): | |
self.start = time.time() | |
print(f"{self.method} starts") | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
end = time.time() | |
print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]: | |
if image is None: | |
print("Error: Input image is None") | |
return "", None | |
try: | |
if g.trellis_pipeline is None: | |
print("Error: trellis_pipeline is not initialized") | |
return "", None | |
# webp 이미지를 RGB로 변환 | |
if isinstance(image, str) and image.endswith('.webp'): | |
image = Image.open(image).convert('RGB') | |
elif isinstance(image, Image.Image): | |
image = image.convert('RGB') | |
trial_id = str(uuid.uuid4()) | |
processed_image = g.trellis_pipeline.preprocess_image(image) | |
if processed_image is not None: | |
save_path = f"{TMP_DIR}/{trial_id}.png" | |
processed_image.save(save_path) | |
print(f"Saved processed image to: {save_path}") | |
return trial_id, processed_image | |
else: | |
print("Error: Processed image is None") | |
return "", None | |
except Exception as e: | |
print(f"Error in image preprocessing: {str(e)}") | |
return "", None | |
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict: | |
return { | |
'gaussian': { | |
**gs.init_params, | |
'_xyz': gs._xyz.cpu().numpy(), | |
'_features_dc': gs._features_dc.cpu().numpy(), | |
'_scaling': gs._scaling.cpu().numpy(), | |
'_rotation': gs._rotation.cpu().numpy(), | |
'_opacity': gs._opacity.cpu().numpy(), | |
}, | |
'mesh': { | |
'vertices': mesh.vertices.cpu().numpy(), | |
'faces': mesh.faces.cpu().numpy(), | |
}, | |
'trial_id': trial_id, | |
} | |
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: | |
gs = Gaussian( | |
aabb=state['gaussian']['aabb'], | |
sh_degree=state['gaussian']['sh_degree'], | |
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], | |
scaling_bias=state['gaussian']['scaling_bias'], | |
opacity_bias=state['gaussian']['opacity_bias'], | |
scaling_activation=state['gaussian']['scaling_activation'], | |
) | |
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') | |
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') | |
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') | |
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') | |
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') | |
mesh = edict( | |
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), | |
faces=torch.tensor(state['mesh']['faces'], device='cuda'), | |
) | |
return gs, mesh, state['trial_id'] | |
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]: | |
print(f"Starting image_to_3d with trial_id: {trial_id}") | |
if not trial_id or trial_id.strip() == "": | |
print("Error: No trial_id provided") | |
return None, None | |
try: | |
# CUDA 메모리 초기화 | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.synchronize() | |
gc.collect() | |
if randomize_seed: | |
seed = np.random.randint(0, MAX_SEED) | |
image_path = f"{TMP_DIR}/{trial_id}.png" | |
print(f"Looking for image at: {image_path}") | |
if not os.path.exists(image_path): | |
print(f"Error: Image file not found at {image_path}") | |
return None, None | |
image = Image.open(image_path) | |
print(f"Successfully loaded image with size: {image.size}") | |
# 이미지 크기 제한 | |
max_size = 512 | |
if max(image.size) > max_size: | |
ratio = max_size / max(image.size) | |
new_size = tuple(int(dim * ratio) for dim in image.size) | |
image = image.resize(new_size, Image.LANCZOS) | |
print(f"Resized image to: {image.size}") | |
# GPU 작업 시작 | |
with torch.inference_mode(): | |
try: | |
# 모델을 GPU로 이동 | |
g.trellis_pipeline.to('cuda') | |
torch.cuda.synchronize() | |
# 3D 생성 | |
outputs = g.trellis_pipeline.run( | |
image, | |
seed=seed, | |
formats=["gaussian", "mesh"], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": min(ss_sampling_steps, 12), | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": min(slat_sampling_steps, 12), | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
torch.cuda.synchronize() | |
# 비디오 렌더링 | |
video = render_utils.render_video( | |
outputs['gaussian'][0], | |
num_frames=60, | |
resolution=512 | |
)['color'] | |
torch.cuda.synchronize() | |
video_geo = render_utils.render_video( | |
outputs['mesh'][0], | |
num_frames=60, | |
resolution=512 | |
)['normal'] | |
torch.cuda.synchronize() | |
# CPU로 데이터 이동 | |
video = [v.cpu().numpy() if torch.is_tensor(v) else v for v in video] | |
video_geo = [v.cpu().numpy() if torch.is_tensor(v) else v for v in video_geo] | |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] | |
new_trial_id = str(uuid.uuid4()) | |
video_path = f"{TMP_DIR}/{new_trial_id}.mp4" | |
os.makedirs(os.path.dirname(video_path), exist_ok=True) | |
imageio.mimsave(video_path, video, fps=15) | |
# 상태 저장 | |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], new_trial_id) | |
return state, video_path | |
finally: | |
# 정리 작업 | |
g.trellis_pipeline.to('cpu') | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.synchronize() | |
gc.collect() | |
except Exception as e: | |
print(f"Error in image_to_3d: {str(e)}") | |
if hasattr(g.trellis_pipeline, 'to'): | |
g.trellis_pipeline.to('cpu') | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.synchronize() | |
gc.collect() | |
return None, None | |
def clear_gpu_memory(): | |
"""GPU 메모리를 정리하는 유틸리티 함수""" | |
try: | |
if torch.cuda.is_available(): | |
with torch.cuda.device('cuda'): | |
torch.cuda.empty_cache() | |
torch.cuda.synchronize() | |
gc.collect() | |
except Exception as e: | |
print(f"Error clearing GPU memory: {e}") | |
def move_to_device(model, device): | |
"""모델을 안전하게 디바이스로 이동하는 함수""" | |
try: | |
if hasattr(model, 'to'): | |
clear_gpu_memory() | |
model.to(device) | |
if device == 'cuda': | |
torch.cuda.synchronize() | |
clear_gpu_memory() | |
except Exception as e: | |
print(f"Error moving model to {device}: {str(e)}") | |
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]: | |
try: | |
# GPU 메모리 정리 | |
clear_gpu_memory() | |
# 상태 언패킹 | |
gs, mesh, trial_id = unpack_state(state) | |
# GLB 변환 전 유효성 검사 | |
if gs is None or mesh is None: | |
print("Error: Invalid gaussian or mesh data") | |
return None, None | |
# GLB 변환 | |
with torch.inference_mode(): | |
try: | |
# 모든 텐서를 CUDA로 이동하고 gradient 활성화 | |
device = torch.device('cuda:0') | |
# Gaussian 텐서들을 변환 | |
for attr_name in ['_xyz', '_features_dc', '_scaling', '_rotation', '_opacity']: | |
if hasattr(gs, attr_name): | |
tensor = getattr(gs, attr_name) | |
if torch.is_tensor(tensor): | |
# gradient 계산이 필요한 텐서로 변환 | |
new_tensor = tensor.detach().clone().float().to(device).requires_grad_(True) | |
setattr(gs, attr_name, new_tensor) | |
# Mesh 텐서들을 변환 | |
if hasattr(mesh, 'vertices') and torch.is_tensor(mesh.vertices): | |
mesh.vertices = mesh.vertices.detach().clone().float().to(device).requires_grad_(True) | |
if hasattr(mesh, 'faces') and torch.is_tensor(mesh.faces): | |
mesh.faces = mesh.faces.detach().clone().long().to(device) | |
# 추가 속성 확인 및 변환 | |
for attr_name in dir(mesh): | |
if attr_name.startswith('_'): | |
continue | |
attr = getattr(mesh, attr_name) | |
if torch.is_tensor(attr): | |
if attr.dtype in [torch.float32, torch.float64]: | |
setattr(mesh, attr_name, attr.to(device).requires_grad_(True)) | |
else: | |
setattr(mesh, attr_name, attr.to(device)) | |
print("Device and gradient check before GLB conversion:") | |
print(f"Gaussian xyz device: {gs._xyz.device}, requires_grad: {gs._xyz.requires_grad}") | |
print(f"Mesh vertices device: {mesh.vertices.device}, requires_grad: {mesh.vertices.requires_grad}") | |
# GLB 변환 | |
glb = postprocessing_utils.to_glb( | |
gs, | |
mesh, | |
simplify=mesh_simplify, | |
texture_size=texture_size, | |
verbose=True | |
) | |
except Exception as e: | |
print(f"Error during GLB conversion: {str(e)}") | |
# 디바이스와 gradient 정보 출력 | |
if hasattr(gs, '_xyz'): | |
print(f"Gaussian xyz device: {gs._xyz.device}, requires_grad: {gs._xyz.requires_grad}") | |
if hasattr(mesh, 'vertices'): | |
print(f"Mesh vertices device: {mesh.vertices.device}, requires_grad: {mesh.vertices.requires_grad}") | |
return None, None | |
if glb is None: | |
print("Error: GLB conversion failed") | |
return None, None | |
# 파일 저장 | |
glb_path = f"{TMP_DIR}/{trial_id}.glb" | |
try: | |
glb.export(glb_path) | |
if not os.path.exists(glb_path): | |
print(f"Error: GLB file was not created at {glb_path}") | |
return None, None | |
except Exception as e: | |
print(f"Error saving GLB file: {str(e)}") | |
return None, None | |
print(f"Successfully created GLB file at: {glb_path}") | |
return glb_path, glb_path | |
except Exception as e: | |
print(f"Error in extract_glb: {str(e)}") | |
return None, None | |
finally: | |
# 정리 작업 | |
clear_gpu_memory() | |
def activate_button() -> gr.Button: | |
return gr.Button(interactive=True) | |
def deactivate_button() -> gr.Button: | |
return gr.Button(interactive=False) | |
def text_to_image(prompt: str, height: int, width: int, steps: int, scales: float, seed: int) -> Image.Image: | |
try: | |
# CUDA 메모리 초기화 | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.synchronize() | |
gc.collect() | |
# 한글 감지 및 번역 | |
def contains_korean(text): | |
return any(ord('가') <= ord(c) <= ord('힣') for c in text) | |
if contains_korean(prompt): | |
translated = g.translator(prompt)[0]['translation_text'] | |
prompt = translated | |
formatted_prompt = f"wbgmsst, 3D, {prompt}, white background" | |
# 크기 제한 | |
height = min(height, 512) | |
width = min(width, 512) | |
steps = min(steps, 12) | |
with torch.inference_mode(): | |
generated_image = g.flux_pipe( | |
prompt=[formatted_prompt], | |
generator=torch.Generator('cuda').manual_seed(int(seed)), | |
num_inference_steps=int(steps), | |
guidance_scale=float(scales), | |
height=int(height), | |
width=int(width), | |
max_sequence_length=256 | |
).images[0] | |
if generated_image is not None: | |
trial_id = str(uuid.uuid4()) | |
save_path = f"{TMP_DIR}/{trial_id}.png" | |
generated_image.save(save_path) | |
print(f"Saved generated image to: {save_path}") | |
return generated_image | |
else: | |
print("Error: Generated image is None") | |
return None | |
except Exception as e: | |
print(f"Error in image generation: {str(e)}") | |
return None | |
finally: | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.synchronize() | |
gc.collect() | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown("""## Craft3D""") | |
# Examples 이미지 로드 | |
example_dir = "assets/example_image/" | |
example_images = [] | |
if os.path.exists(example_dir): | |
for file in os.listdir(example_dir): | |
if file.endswith('.webp'): | |
example_images.append(os.path.join(example_dir, file)) | |
with gr.Row(): | |
with gr.Column(): | |
text_prompt = gr.Textbox( | |
label="Text Prompt", | |
placeholder="Describe what you want to create...", | |
lines=3 | |
) | |
# 이미지 프롬프트 | |
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300) | |
with gr.Accordion("Image Generation Settings", open=False): | |
with gr.Row(): | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=1152, | |
step=64, | |
value=1024 | |
) | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=1152, | |
step=64, | |
value=1024 | |
) | |
with gr.Row(): | |
steps = gr.Slider( | |
label="Inference Steps", | |
minimum=6, | |
maximum=25, | |
step=1, | |
value=8 | |
) | |
scales = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.0, | |
maximum=5.0, | |
step=0.1, | |
value=3.5 | |
) | |
seed = gr.Number( | |
label="Seed", | |
value=lambda: torch.randint(0, MAX_SEED, (1,)).item(), | |
precision=0 | |
) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
generate_image_btn = gr.Button("Generate Image") | |
with gr.Accordion("3D Generation Settings", open=False): | |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Structure Guidance Strength", value=7.5, step=0.1) | |
ss_sampling_steps = gr.Slider(1, 50, label="Structure Sampling Steps", value=12, step=1) | |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Latent Guidance Strength", value=3.0, step=0.1) | |
slat_sampling_steps = gr.Slider(1, 50, label="Latent Sampling Steps", value=12, step=1) | |
generate_3d_btn = gr.Button("Generate 3D") | |
with gr.Accordion("GLB Extraction Settings", open=False): | |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01) | |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512) | |
extract_glb_btn = gr.Button("Extract GLB", interactive=False) | |
with gr.Column(): | |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) | |
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300) | |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False) | |
trial_id = gr.Textbox(visible=False) | |
output_buf = gr.State() | |
# Examples 갤러리를 맨 아래로 이동 | |
if example_images: | |
gr.Markdown("""### Example Images""") | |
with gr.Row(): | |
gallery = gr.Gallery( | |
value=example_images, | |
label="Click an image to use it", | |
show_label=True, | |
elem_id="gallery", | |
columns=11, # 한 줄에 12개 | |
rows=3, # 2줄 | |
height=400, # 높이 조정 | |
allow_preview=True, | |
object_fit="contain" # 이미지 비율 유지 | |
) | |
def load_example(evt: gr.SelectData): | |
selected_image = Image.open(example_images[evt.index]) | |
trial_id_val, processed_image = preprocess_image(selected_image) | |
return selected_image, trial_id_val | |
gallery.select( | |
load_example, | |
None, | |
[image_prompt, trial_id], | |
show_progress=True | |
) | |
# Handlers | |
generate_image_btn.click( | |
text_to_image, | |
inputs=[text_prompt, height, width, steps, scales, seed], | |
outputs=[image_prompt] | |
).then( | |
preprocess_image, | |
inputs=[image_prompt], | |
outputs=[trial_id, image_prompt] | |
) | |
# 나머지 핸들러들 | |
image_prompt.upload( | |
preprocess_image, | |
inputs=[image_prompt], | |
outputs=[trial_id, image_prompt], | |
) | |
image_prompt.clear( | |
lambda: '', | |
outputs=[trial_id], | |
) | |
generate_3d_btn.click( | |
image_to_3d, | |
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps], | |
outputs=[output_buf, video_output], | |
).then( | |
activate_button, | |
outputs=[extract_glb_btn], | |
) | |
video_output.clear( | |
deactivate_button, | |
outputs=[extract_glb_btn], | |
) | |
extract_glb_btn.click( | |
extract_glb, | |
inputs=[output_buf, mesh_simplify, texture_size], | |
outputs=[model_output, download_glb], | |
).then( | |
activate_button, | |
outputs=[download_glb], | |
) | |
model_output.clear( | |
deactivate_button, | |
outputs=[download_glb], | |
) | |
if __name__ == "__main__": | |
try: | |
# CPU로 초기화 | |
device = "cpu" | |
print(f"Using device: {device}") | |
# 모델 초기화 | |
initialize_models(device) | |
# 초기 이미지 전처리 테스트 | |
try: | |
test_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)) | |
if g.trellis_pipeline is not None: | |
g.trellis_pipeline.preprocess_image(test_image) | |
else: | |
print("Warning: trellis_pipeline is None") | |
except Exception as e: | |
print(f"Warning: Initial preprocessing test failed: {e}") | |
# Gradio 인터페이스 실행 | |
demo.queue() # 큐 기능 활성화 | |
demo.launch( | |
allowed_paths=[PERSISTENT_DIR, TMP_DIR], | |
server_name="0.0.0.0", | |
server_port=7860, | |
show_error=True | |
) | |
except Exception as e: | |
print(f"Error during initialization: {e}") | |
raise |