SORA-3D / app.py
aiqtech's picture
Update app.py
4ec8a28 verified
raw
history blame
24.9 kB
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from diffusers import FluxPipeline
from typing import Tuple, Dict, Any # Tuple import 추가
# 파일 상단의 import 문
import transformers
from transformers import pipeline as transformers_pipeline
from transformers import Pipeline
import gc # 파일 상단에 추가
# 전역 변수 초기화
class GlobalVars:
def __init__(self):
self.translator = None
self.trellis_pipeline = None
self.flux_pipe = None
g = GlobalVars()
def initialize_models(device):
try:
print("Initializing models...")
# 3D 생성 파이프라인
g.trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained(
"JeffreyXiang/TRELLIS-image-large"
)
print("TrellisImageTo3DPipeline loaded successfully")
# 이미지 생성 파이프라인
print("Loading flux_pipe...")
g.flux_pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
device_map="balanced"
)
print("FluxPipeline loaded successfully")
# Hyper-SD LoRA 로드
print("Loading LoRA weights...")
lora_path = hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
use_auth_token=HF_TOKEN
)
g.flux_pipe.load_lora_weights(lora_path)
g.flux_pipe.fuse_lora(lora_scale=0.125)
print("LoRA weights loaded successfully")
# 번역기 초기화
print("Initializing translator...")
g.translator = transformers_pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=device
)
print("Model initialization completed successfully")
except Exception as e:
print(f"Error during model initialization: {str(e)}")
raise
# CUDA 메모리 관리 설정
torch.cuda.empty_cache()
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
# 환경 변수 설정
# 환경 변수 설정
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
os.environ['SPCONV_ALGO'] = 'native'
os.environ['SPARSE_BACKEND'] = 'native'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
os.environ['XFORMERS_FORCE_DISABLE_TRITON'] = '1'
os.environ['XFORMERS_ENABLE_FLASH_ATTENTION'] = '1'
os.environ['TORCH_CUDA_MEMORY_ALLOCATOR'] = 'native'
os.environ['PYTORCH_NO_CUDA_MEMORY_CACHING'] = '1'
# CUDA 초기화 방지
torch.set_grad_enabled(False)
# Hugging Face 토큰 설정
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("HF_TOKEN environment variable is not set")
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
os.environ['SPCONV_ALGO'] = 'native'
torch.backends.cuda.matmul.allow_tf32 = True
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
if image is None:
print("Error: Input image is None")
return "", None
try:
if g.trellis_pipeline is None:
print("Error: trellis_pipeline is not initialized")
return "", None
# webp 이미지를 RGB로 변환
if isinstance(image, str) and image.endswith('.webp'):
image = Image.open(image).convert('RGB')
elif isinstance(image, Image.Image):
image = image.convert('RGB')
trial_id = str(uuid.uuid4())
processed_image = g.trellis_pipeline.preprocess_image(image)
if processed_image is not None:
save_path = f"{TMP_DIR}/{trial_id}.png"
processed_image.save(save_path)
print(f"Saved processed image to: {save_path}")
return trial_id, processed_image
else:
print("Error: Processed image is None")
return "", None
except Exception as e:
print(f"Error in image preprocessing: {str(e)}")
return "", None
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh, state['trial_id']
@spaces.GPU
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
print(f"Starting image_to_3d with trial_id: {trial_id}")
if not trial_id or trial_id.strip() == "":
print("Error: No trial_id provided")
return None, None
try:
# CUDA 메모리 초기화
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)
image_path = f"{TMP_DIR}/{trial_id}.png"
print(f"Looking for image at: {image_path}")
if not os.path.exists(image_path):
print(f"Error: Image file not found at {image_path}")
return None, None
image = Image.open(image_path)
print(f"Successfully loaded image with size: {image.size}")
# 이미지 크기 제한
max_size = 512
if max(image.size) > max_size:
ratio = max_size / max(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.LANCZOS)
print(f"Resized image to: {image.size}")
# GPU 작업 시작
with torch.inference_mode():
try:
# 모델을 GPU로 이동
g.trellis_pipeline.to('cuda')
torch.cuda.synchronize()
# 3D 생성
outputs = g.trellis_pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": min(ss_sampling_steps, 12),
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": min(slat_sampling_steps, 12),
"cfg_strength": slat_guidance_strength,
},
)
torch.cuda.synchronize()
# 비디오 렌더링
video = render_utils.render_video(
outputs['gaussian'][0],
num_frames=60,
resolution=512
)['color']
torch.cuda.synchronize()
video_geo = render_utils.render_video(
outputs['mesh'][0],
num_frames=60,
resolution=512
)['normal']
torch.cuda.synchronize()
# CPU로 데이터 이동
video = [v.cpu().numpy() if torch.is_tensor(v) else v for v in video]
video_geo = [v.cpu().numpy() if torch.is_tensor(v) else v for v in video_geo]
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
new_trial_id = str(uuid.uuid4())
video_path = f"{TMP_DIR}/{new_trial_id}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
imageio.mimsave(video_path, video, fps=15)
# 상태 저장
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], new_trial_id)
return state, video_path
finally:
# 정리 작업
g.trellis_pipeline.to('cpu')
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
except Exception as e:
print(f"Error in image_to_3d: {str(e)}")
if hasattr(g.trellis_pipeline, 'to'):
g.trellis_pipeline.to('cpu')
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
return None, None
def clear_gpu_memory():
"""GPU 메모리를 정리하는 유틸리티 함수"""
try:
if torch.cuda.is_available():
with torch.cuda.device('cuda'):
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
except Exception as e:
print(f"Error clearing GPU memory: {e}")
def move_to_device(model, device):
"""모델을 안전하게 디바이스로 이동하는 함수"""
try:
if hasattr(model, 'to'):
clear_gpu_memory()
model.to(device)
if device == 'cuda':
torch.cuda.synchronize()
clear_gpu_memory()
except Exception as e:
print(f"Error moving model to {device}: {str(e)}")
@spaces.GPU
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
try:
# GPU 메모리 정리
clear_gpu_memory()
# 상태 언패킹
gs, mesh, trial_id = unpack_state(state)
# GLB 변환 전 유효성 검사
if gs is None or mesh is None:
print("Error: Invalid gaussian or mesh data")
return None, None
# GLB 변환
with torch.inference_mode():
try:
# 모든 텐서를 CUDA로 이동하고 gradient 활성화
device = torch.device('cuda:0')
# Gaussian 텐서들을 변환
for attr_name in ['_xyz', '_features_dc', '_scaling', '_rotation', '_opacity']:
if hasattr(gs, attr_name):
tensor = getattr(gs, attr_name)
if torch.is_tensor(tensor):
# gradient 계산이 필요한 텐서로 변환
new_tensor = tensor.detach().clone().float().to(device).requires_grad_(True)
setattr(gs, attr_name, new_tensor)
# Mesh 텐서들을 변환
if hasattr(mesh, 'vertices') and torch.is_tensor(mesh.vertices):
mesh.vertices = mesh.vertices.detach().clone().float().to(device).requires_grad_(True)
if hasattr(mesh, 'faces') and torch.is_tensor(mesh.faces):
mesh.faces = mesh.faces.detach().clone().long().to(device)
# 추가 속성 확인 및 변환
for attr_name in dir(mesh):
if attr_name.startswith('_'):
continue
attr = getattr(mesh, attr_name)
if torch.is_tensor(attr):
if attr.dtype in [torch.float32, torch.float64]:
setattr(mesh, attr_name, attr.to(device).requires_grad_(True))
else:
setattr(mesh, attr_name, attr.to(device))
print("Device and gradient check before GLB conversion:")
print(f"Gaussian xyz device: {gs._xyz.device}, requires_grad: {gs._xyz.requires_grad}")
print(f"Mesh vertices device: {mesh.vertices.device}, requires_grad: {mesh.vertices.requires_grad}")
# GLB 변환
glb = postprocessing_utils.to_glb(
gs,
mesh,
simplify=mesh_simplify,
texture_size=texture_size,
verbose=True
)
except Exception as e:
print(f"Error during GLB conversion: {str(e)}")
# 디바이스와 gradient 정보 출력
if hasattr(gs, '_xyz'):
print(f"Gaussian xyz device: {gs._xyz.device}, requires_grad: {gs._xyz.requires_grad}")
if hasattr(mesh, 'vertices'):
print(f"Mesh vertices device: {mesh.vertices.device}, requires_grad: {mesh.vertices.requires_grad}")
return None, None
if glb is None:
print("Error: GLB conversion failed")
return None, None
# 파일 저장
glb_path = f"{TMP_DIR}/{trial_id}.glb"
try:
glb.export(glb_path)
if not os.path.exists(glb_path):
print(f"Error: GLB file was not created at {glb_path}")
return None, None
except Exception as e:
print(f"Error saving GLB file: {str(e)}")
return None, None
print(f"Successfully created GLB file at: {glb_path}")
return glb_path, glb_path
except Exception as e:
print(f"Error in extract_glb: {str(e)}")
return None, None
finally:
# 정리 작업
clear_gpu_memory()
def activate_button() -> gr.Button:
return gr.Button(interactive=True)
def deactivate_button() -> gr.Button:
return gr.Button(interactive=False)
@spaces.GPU
def text_to_image(prompt: str, height: int, width: int, steps: int, scales: float, seed: int) -> Image.Image:
try:
# CUDA 메모리 초기화
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
# 한글 감지 및 번역
def contains_korean(text):
return any(ord('가') <= ord(c) <= ord('힣') for c in text)
if contains_korean(prompt):
translated = g.translator(prompt)[0]['translation_text']
prompt = translated
formatted_prompt = f"wbgmsst, 3D, {prompt}, white background"
# 크기 제한
height = min(height, 512)
width = min(width, 512)
steps = min(steps, 12)
with torch.inference_mode():
generated_image = g.flux_pipe(
prompt=[formatted_prompt],
generator=torch.Generator('cuda').manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
if generated_image is not None:
trial_id = str(uuid.uuid4())
save_path = f"{TMP_DIR}/{trial_id}.png"
generated_image.save(save_path)
print(f"Saved generated image to: {save_path}")
return generated_image
else:
print("Error: Generated image is None")
return None
except Exception as e:
print(f"Error in image generation: {str(e)}")
return None
finally:
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""## Craft3D""")
# Examples 이미지 로드
example_dir = "assets/example_image/"
example_images = []
if os.path.exists(example_dir):
for file in os.listdir(example_dir):
if file.endswith('.webp'):
example_images.append(os.path.join(example_dir, file))
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Describe what you want to create...",
lines=3
)
# 이미지 프롬프트
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
with gr.Accordion("Image Generation Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
seed = gr.Number(
label="Seed",
value=lambda: torch.randint(0, MAX_SEED, (1,)).item(),
precision=0
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
generate_image_btn = gr.Button("Generate Image")
with gr.Accordion("3D Generation Settings", open=False):
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Structure Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Structure Sampling Steps", value=12, step=1)
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Latent Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Latent Sampling Steps", value=12, step=1)
generate_3d_btn = gr.Button("Generate 3D")
with gr.Accordion("GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
trial_id = gr.Textbox(visible=False)
output_buf = gr.State()
# Examples 갤러리를 맨 아래로 이동
if example_images:
gr.Markdown("""### Example Images""")
with gr.Row():
gallery = gr.Gallery(
value=example_images,
label="Click an image to use it",
show_label=True,
elem_id="gallery",
columns=11, # 한 줄에 12개
rows=3, # 2줄
height=400, # 높이 조정
allow_preview=True,
object_fit="contain" # 이미지 비율 유지
)
def load_example(evt: gr.SelectData):
selected_image = Image.open(example_images[evt.index])
trial_id_val, processed_image = preprocess_image(selected_image)
return selected_image, trial_id_val
gallery.select(
load_example,
None,
[image_prompt, trial_id],
show_progress=True
)
# Handlers
generate_image_btn.click(
text_to_image,
inputs=[text_prompt, height, width, steps, scales, seed],
outputs=[image_prompt]
).then(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt]
)
# 나머지 핸들러들
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt],
)
image_prompt.clear(
lambda: '',
outputs=[trial_id],
)
generate_3d_btn.click(
image_to_3d,
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
).then(
activate_button,
outputs=[extract_glb_btn],
)
video_output.clear(
deactivate_button,
outputs=[extract_glb_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
activate_button,
outputs=[download_glb],
)
model_output.clear(
deactivate_button,
outputs=[download_glb],
)
if __name__ == "__main__":
try:
# CPU로 초기화
device = "cpu"
print(f"Using device: {device}")
# 모델 초기화
initialize_models(device)
# 초기 이미지 전처리 테스트
try:
test_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
if g.trellis_pipeline is not None:
g.trellis_pipeline.preprocess_image(test_image)
else:
print("Warning: trellis_pipeline is None")
except Exception as e:
print(f"Warning: Initial preprocessing test failed: {e}")
# Gradio 인터페이스 실행
demo.queue() # 큐 기능 활성화
demo.launch(
allowed_paths=[PERSISTENT_DIR, TMP_DIR],
server_name="0.0.0.0",
server_port=7860,
show_error=True
)
except Exception as e:
print(f"Error during initialization: {e}")
raise