Spaces:
Running
on
L40S
Running
on
L40S
Update app.py
Browse files
app.py
CHANGED
@@ -81,14 +81,15 @@ torch.backends.cuda.matmul.allow_tf32 = True
|
|
81 |
torch.backends.cudnn.benchmark = True
|
82 |
|
83 |
# 환경 변수 설정
|
84 |
-
|
85 |
-
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512,garbage_collection_threshold:0.6"
|
86 |
os.environ['SPCONV_ALGO'] = 'native'
|
87 |
os.environ['SPARSE_BACKEND'] = 'native'
|
88 |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
89 |
os.environ['XFORMERS_FORCE_DISABLE_TRITON'] = '1'
|
90 |
os.environ['XFORMERS_ENABLE_FLASH_ATTENTION'] = '1'
|
91 |
os.environ['TORCH_CUDA_MEMORY_ALLOCATOR'] = 'native'
|
|
|
|
|
92 |
|
93 |
# CUDA 초기화 방지
|
94 |
torch.set_grad_enabled(False)
|
@@ -208,6 +209,7 @@ def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_stre
|
|
208 |
try:
|
209 |
# CUDA 메모리 초기화
|
210 |
torch.cuda.empty_cache()
|
|
|
211 |
|
212 |
if randomize_seed:
|
213 |
seed = np.random.randint(0, MAX_SEED)
|
@@ -222,37 +224,60 @@ def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_stre
|
|
222 |
image = Image.open(image_path)
|
223 |
print(f"Successfully loaded image with size: {image.size}")
|
224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
# GPU 작업 시작
|
226 |
with torch.cuda.device(0):
|
227 |
try:
|
228 |
# 모델을 GPU로 이동
|
229 |
-
g.trellis_pipeline
|
230 |
torch.cuda.synchronize()
|
231 |
|
232 |
-
with torch.inference_mode():
|
233 |
-
#
|
|
|
|
|
|
|
234 |
outputs = g.trellis_pipeline.run(
|
235 |
image,
|
236 |
seed=seed,
|
237 |
formats=["gaussian", "mesh"],
|
238 |
preprocess_image=False,
|
239 |
sparse_structure_sampler_params={
|
240 |
-
"steps": ss_sampling_steps,
|
241 |
"cfg_strength": ss_guidance_strength,
|
242 |
},
|
243 |
slat_sampler_params={
|
244 |
-
"steps": slat_sampling_steps,
|
245 |
"cfg_strength": slat_guidance_strength,
|
246 |
},
|
247 |
)
|
248 |
torch.cuda.synchronize()
|
249 |
|
250 |
-
#
|
251 |
-
|
252 |
-
torch.cuda.synchronize()
|
253 |
|
254 |
-
|
255 |
-
torch.cuda.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
# CPU로 데이터 이동 및 후처리
|
258 |
video = [v.cpu().numpy() if torch.is_tensor(v) else v for v in video]
|
@@ -271,15 +296,14 @@ def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_stre
|
|
271 |
|
272 |
finally:
|
273 |
# 정리 작업
|
274 |
-
g.trellis_pipeline
|
275 |
torch.cuda.empty_cache()
|
276 |
torch.cuda.synchronize()
|
277 |
|
278 |
except Exception as e:
|
279 |
print(f"Error in image_to_3d: {str(e)}")
|
280 |
-
# 에러 발생 시 정리
|
281 |
if hasattr(g.trellis_pipeline, 'to'):
|
282 |
-
g.trellis_pipeline
|
283 |
torch.cuda.empty_cache()
|
284 |
torch.cuda.synchronize()
|
285 |
return None, None
|
@@ -289,14 +313,17 @@ def clear_gpu_memory():
|
|
289 |
if torch.cuda.is_available():
|
290 |
torch.cuda.empty_cache()
|
291 |
torch.cuda.synchronize()
|
292 |
-
|
|
|
293 |
def move_to_device(model, device):
|
294 |
"""모델을 안전하게 디바이스로 이동하는 함수"""
|
295 |
try:
|
296 |
if hasattr(model, 'to'):
|
|
|
297 |
model.to(device)
|
298 |
if device == 'cuda':
|
299 |
torch.cuda.synchronize()
|
|
|
300 |
except Exception as e:
|
301 |
print(f"Error moving model to {device}: {str(e)}")
|
302 |
|
|
|
81 |
torch.backends.cudnn.benchmark = True
|
82 |
|
83 |
# 환경 변수 설정
|
84 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:256,garbage_collection_threshold:0.8"
|
|
|
85 |
os.environ['SPCONV_ALGO'] = 'native'
|
86 |
os.environ['SPARSE_BACKEND'] = 'native'
|
87 |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
88 |
os.environ['XFORMERS_FORCE_DISABLE_TRITON'] = '1'
|
89 |
os.environ['XFORMERS_ENABLE_FLASH_ATTENTION'] = '1'
|
90 |
os.environ['TORCH_CUDA_MEMORY_ALLOCATOR'] = 'native'
|
91 |
+
os.environ['PYTORCH_NO_CUDA_MEMORY_CACHING'] = '1'
|
92 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
93 |
|
94 |
# CUDA 초기화 방지
|
95 |
torch.set_grad_enabled(False)
|
|
|
209 |
try:
|
210 |
# CUDA 메모리 초기화
|
211 |
torch.cuda.empty_cache()
|
212 |
+
torch.cuda.synchronize()
|
213 |
|
214 |
if randomize_seed:
|
215 |
seed = np.random.randint(0, MAX_SEED)
|
|
|
224 |
image = Image.open(image_path)
|
225 |
print(f"Successfully loaded image with size: {image.size}")
|
226 |
|
227 |
+
# 이미지 크기 제한
|
228 |
+
max_size = 512
|
229 |
+
if max(image.size) > max_size:
|
230 |
+
ratio = max_size / max(image.size)
|
231 |
+
new_size = tuple(int(dim * ratio) for dim in image.size)
|
232 |
+
image = image.resize(new_size, Image.LANCZOS)
|
233 |
+
print(f"Resized image to: {image.size}")
|
234 |
+
|
235 |
# GPU 작업 시작
|
236 |
with torch.cuda.device(0):
|
237 |
try:
|
238 |
# 모델을 GPU로 이동
|
239 |
+
move_to_device(g.trellis_pipeline, 'cuda')
|
240 |
torch.cuda.synchronize()
|
241 |
|
242 |
+
with torch.inference_mode(), torch.cuda.amp.autocast():
|
243 |
+
# 메모리 사용량 최적화를 위한 배치 크기 설정
|
244 |
+
torch.cuda.set_per_process_memory_fraction(0.8) # GPU 메모리 사용량 제한
|
245 |
+
|
246 |
+
# 3D 생성
|
247 |
outputs = g.trellis_pipeline.run(
|
248 |
image,
|
249 |
seed=seed,
|
250 |
formats=["gaussian", "mesh"],
|
251 |
preprocess_image=False,
|
252 |
sparse_structure_sampler_params={
|
253 |
+
"steps": min(ss_sampling_steps, 20), # 스텝 수 제한
|
254 |
"cfg_strength": ss_guidance_strength,
|
255 |
},
|
256 |
slat_sampler_params={
|
257 |
+
"steps": min(slat_sampling_steps, 20), # 스텝 수 제한
|
258 |
"cfg_strength": slat_guidance_strength,
|
259 |
},
|
260 |
)
|
261 |
torch.cuda.synchronize()
|
262 |
|
263 |
+
# 비디오 렌더링을 위한 메모리 확보
|
264 |
+
torch.cuda.empty_cache()
|
|
|
265 |
|
266 |
+
# 비디오 렌더링
|
267 |
+
with torch.cuda.amp.autocast():
|
268 |
+
video = render_utils.render_video(
|
269 |
+
outputs['gaussian'][0],
|
270 |
+
num_frames=60, # 프레임 수 감소
|
271 |
+
resolution=512 # 해상도 제한
|
272 |
+
)['color']
|
273 |
+
torch.cuda.synchronize()
|
274 |
+
|
275 |
+
video_geo = render_utils.render_video(
|
276 |
+
outputs['mesh'][0],
|
277 |
+
num_frames=60, # 프레임 수 감소
|
278 |
+
resolution=512 # 해상도 제한
|
279 |
+
)['normal']
|
280 |
+
torch.cuda.synchronize()
|
281 |
|
282 |
# CPU로 데이터 이동 및 후처리
|
283 |
video = [v.cpu().numpy() if torch.is_tensor(v) else v for v in video]
|
|
|
296 |
|
297 |
finally:
|
298 |
# 정리 작업
|
299 |
+
move_to_device(g.trellis_pipeline, 'cpu')
|
300 |
torch.cuda.empty_cache()
|
301 |
torch.cuda.synchronize()
|
302 |
|
303 |
except Exception as e:
|
304 |
print(f"Error in image_to_3d: {str(e)}")
|
|
|
305 |
if hasattr(g.trellis_pipeline, 'to'):
|
306 |
+
move_to_device(g.trellis_pipeline, 'cpu')
|
307 |
torch.cuda.empty_cache()
|
308 |
torch.cuda.synchronize()
|
309 |
return None, None
|
|
|
313 |
if torch.cuda.is_available():
|
314 |
torch.cuda.empty_cache()
|
315 |
torch.cuda.synchronize()
|
316 |
+
gc.collect() # 가비지 컬렉션 실행
|
317 |
+
|
318 |
def move_to_device(model, device):
|
319 |
"""모델을 안전하게 디바이스로 이동하는 함수"""
|
320 |
try:
|
321 |
if hasattr(model, 'to'):
|
322 |
+
clear_gpu_memory()
|
323 |
model.to(device)
|
324 |
if device == 'cuda':
|
325 |
torch.cuda.synchronize()
|
326 |
+
clear_gpu_memory()
|
327 |
except Exception as e:
|
328 |
print(f"Error moving model to {device}: {str(e)}")
|
329 |
|