Spaces:
Running
on
L40S
Running
on
L40S
Update app.py
Browse files
app.py
CHANGED
@@ -23,30 +23,45 @@ os.makedirs(TMP_DIR, exist_ok=True)
|
|
23 |
def initialize_models():
|
24 |
global pipeline, translator, flux_pipe
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
raise ValueError("HF_TOKEN environment variable is not set. Please set your Hugging Face token.")
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
def translate_if_korean(text):
|
52 |
if any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text):
|
@@ -101,32 +116,56 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
101 |
return gs, mesh, state['trial_id']
|
102 |
|
103 |
@spaces.GPU
|
104 |
-
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float,
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
@spaces.GPU
|
132 |
def generate_image_from_text(prompt, height, width, guidance_scale, num_steps):
|
@@ -165,9 +204,16 @@ def deactivate_button() -> gr.Button:
|
|
165 |
return gr.Button(interactive=False)
|
166 |
|
167 |
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
gr.Markdown("""
|
170 |
-
# 3D Asset Creation & Text-to-Image Generation
|
171 |
""")
|
172 |
|
173 |
with gr.Tabs():
|
@@ -287,11 +333,18 @@ with gr.Blocks() as demo:
|
|
287 |
outputs=[txt2img_output]
|
288 |
)
|
289 |
|
290 |
-
# Launch the Gradio app
|
291 |
if __name__ == "__main__":
|
292 |
-
|
|
|
|
|
|
|
|
|
|
|
293 |
try:
|
294 |
-
|
|
|
295 |
except:
|
296 |
pass
|
297 |
-
|
|
|
|
|
|
23 |
def initialize_models():
|
24 |
global pipeline, translator, flux_pipe
|
25 |
|
26 |
+
# CUDA ๋ฉ๋ชจ๋ฆฌ ์ด๊ธฐํ
|
27 |
+
if torch.cuda.is_available():
|
28 |
+
torch.cuda.empty_cache()
|
|
|
29 |
|
30 |
+
try:
|
31 |
+
# Trellis ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
|
32 |
+
pipeline = TrellisImageTo3DPipeline.from_pretrained(
|
33 |
+
"JeffreyXiang/TRELLIS-image-large",
|
34 |
+
device_map="auto" # Zero GPU ํ๊ฒฝ์ ๋ง๊ฒ ์๋ device ๋งคํ
|
35 |
+
)
|
36 |
+
|
37 |
+
# ๋ฒ์ญ๊ธฐ ์ด๊ธฐํ
|
38 |
+
translator = translation_pipeline(
|
39 |
+
"translation",
|
40 |
+
model="Helsinki-NLP/opus-mt-ko-en",
|
41 |
+
device_map="auto"
|
42 |
+
)
|
43 |
+
|
44 |
+
# Flux ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
|
45 |
+
flux_pipe = FluxPipeline.from_pretrained(
|
46 |
+
"black-forest-labs/FLUX.1-dev",
|
47 |
+
torch_dtype=torch.float16, # bfloat16 ๋์ float16 ์ฌ์ฉ
|
48 |
+
device_map="auto"
|
49 |
+
)
|
50 |
+
|
51 |
+
# LoRA ๊ฐ์ค์น ๋ก๋
|
52 |
+
flux_pipe.load_lora_weights(
|
53 |
+
"gokaygokay/Flux-Game-Assets-LoRA-v2",
|
54 |
+
device_map="auto"
|
55 |
+
)
|
56 |
+
flux_pipe.fuse_lora(lora_scale=1.0)
|
57 |
+
|
58 |
+
except Exception as e:
|
59 |
+
print(f"Error initializing models: {str(e)}")
|
60 |
+
if torch.cuda.is_available():
|
61 |
+
torch.cuda.empty_cache()
|
62 |
+
raise e
|
63 |
+
|
64 |
+
|
65 |
|
66 |
def translate_if_korean(text):
|
67 |
if any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text):
|
|
|
116 |
return gs, mesh, state['trial_id']
|
117 |
|
118 |
@spaces.GPU
|
119 |
+
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float,
|
120 |
+
ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int):
|
121 |
+
try:
|
122 |
+
if torch.cuda.is_available():
|
123 |
+
torch.cuda.empty_cache()
|
124 |
+
|
125 |
+
if randomize_seed:
|
126 |
+
seed = np.random.randint(0, MAX_SEED)
|
127 |
+
|
128 |
+
input_image = Image.open(f"{TMP_DIR}/{trial_id}.png")
|
129 |
+
|
130 |
+
# ๋ฉ๋ชจ๋ฆฌ ์ต์ ํ๋ฅผ ์ํ ์ปจํ
์คํธ ๋งค๋์ ์ฌ์ฉ
|
131 |
+
with torch.cuda.amp.autocast(enabled=True):
|
132 |
+
outputs = pipeline.run(
|
133 |
+
input_image,
|
134 |
+
seed=seed,
|
135 |
+
formats=["gaussian", "mesh"],
|
136 |
+
preprocess_image=False,
|
137 |
+
sparse_structure_sampler_params={
|
138 |
+
"steps": ss_sampling_steps,
|
139 |
+
"cfg_strength": ss_guidance_strength,
|
140 |
+
},
|
141 |
+
slat_sampler_params={
|
142 |
+
"steps": slat_sampling_steps,
|
143 |
+
"cfg_strength": slat_guidance_strength,
|
144 |
+
}
|
145 |
+
)
|
146 |
+
|
147 |
+
# ๋น๋์ค ๋ ๋๋ง
|
148 |
+
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
149 |
+
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
150 |
+
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
151 |
+
|
152 |
+
trial_id = str(uuid.uuid4())
|
153 |
+
video_path = f"{TMP_DIR}/{trial_id}.mp4"
|
154 |
+
os.makedirs(os.path.dirname(video_path), exist_ok=True)
|
155 |
+
imageio.mimsave(video_path, video, fps=15)
|
156 |
+
|
157 |
+
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
|
158 |
+
|
159 |
+
if torch.cuda.is_available():
|
160 |
+
torch.cuda.empty_cache()
|
161 |
+
|
162 |
+
return state, video_path
|
163 |
+
|
164 |
+
except Exception as e:
|
165 |
+
print(f"Error in image_to_3d: {str(e)}")
|
166 |
+
if torch.cuda.is_available():
|
167 |
+
torch.cuda.empty_cache()
|
168 |
+
raise e
|
169 |
|
170 |
@spaces.GPU
|
171 |
def generate_image_from_text(prompt, height, width, guidance_scale, num_steps):
|
|
|
204 |
return gr.Button(interactive=False)
|
205 |
|
206 |
|
207 |
+
css = """
|
208 |
+
footer {
|
209 |
+
visibility: hidden;
|
210 |
+
}
|
211 |
+
"""
|
212 |
+
|
213 |
+
|
214 |
+
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
215 |
gr.Markdown("""
|
216 |
+
# Craft3D : 3D Asset Creation & Text-to-Image Generation
|
217 |
""")
|
218 |
|
219 |
with gr.Tabs():
|
|
|
333 |
outputs=[txt2img_output]
|
334 |
)
|
335 |
|
|
|
336 |
if __name__ == "__main__":
|
337 |
+
# CUDA ๋ฉ๋ชจ๋ฆฌ ์บ์ ์ด๊ธฐํ
|
338 |
+
torch.cuda.empty_cache()
|
339 |
+
|
340 |
+
# ๋ชจ๋ธ ์ด๊ธฐํ
|
341 |
+
initialize_models()
|
342 |
+
|
343 |
try:
|
344 |
+
# rembg ์ฌ์ ๋ก๋
|
345 |
+
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
|
346 |
except:
|
347 |
pass
|
348 |
+
|
349 |
+
# Gradio ์ฑ ์คํ
|
350 |
+
demo.launch(share=True) # share=True ์ถ๊ฐ
|