Spaces:
Running
on
L40S
Running
on
L40S
Update app.py
Browse files
app.py
CHANGED
@@ -34,7 +34,10 @@ class GlobalVars:
|
|
34 |
|
35 |
g = GlobalVars()
|
36 |
|
37 |
-
|
|
|
|
|
|
|
38 |
|
39 |
def initialize_models(device):
|
40 |
try:
|
@@ -85,10 +88,6 @@ def initialize_models(device):
|
|
85 |
print(f"Error during model initialization: {str(e)}")
|
86 |
raise
|
87 |
|
88 |
-
# CUDA ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์ค์
|
89 |
-
torch.cuda.empty_cache()
|
90 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
91 |
-
torch.backends.cudnn.benchmark = True
|
92 |
|
93 |
# ํ๊ฒฝ ๋ณ์ ์ค์
|
94 |
# ํ๊ฒฝ ๋ณ์ ์ค์
|
@@ -104,6 +103,13 @@ os.environ['PYTORCH_NO_CUDA_MEMORY_CACHING'] = '1'
|
|
104 |
# CUDA ์ด๊ธฐํ ๋ฐฉ์ง
|
105 |
torch.set_grad_enabled(False)
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
# Hugging Face ํ ํฐ ์ค์
|
109 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
@@ -209,123 +215,110 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
209 |
return gs, mesh, state['trial_id']
|
210 |
|
211 |
@spaces.GPU
|
212 |
-
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float,
|
213 |
-
|
214 |
-
|
215 |
-
if not trial_id or trial_id.strip() == "":
|
216 |
-
print("Error: No trial_id provided")
|
217 |
-
return None, None
|
218 |
-
|
219 |
try:
|
220 |
-
#
|
221 |
-
|
222 |
-
torch.cuda.empty_cache()
|
223 |
-
torch.cuda.synchronize()
|
224 |
-
gc.collect()
|
225 |
|
226 |
-
if
|
227 |
-
|
228 |
|
229 |
image_path = f"{TMP_DIR}/{trial_id}.png"
|
230 |
-
print(f"Looking for image at: {image_path}")
|
231 |
-
|
232 |
if not os.path.exists(image_path):
|
233 |
-
print(f"Error: Image file not found at {image_path}")
|
234 |
return None, None
|
235 |
|
236 |
image = Image.open(image_path)
|
237 |
-
print(f"Successfully loaded image with size: {image.size}")
|
238 |
|
239 |
-
# ์ด๋ฏธ์ง ํฌ๊ธฐ ์ ํ
|
240 |
-
max_size =
|
241 |
if max(image.size) > max_size:
|
242 |
ratio = max_size / max(image.size)
|
243 |
new_size = tuple(int(dim * ratio) for dim in image.size)
|
244 |
image = image.resize(new_size, Image.LANCZOS)
|
245 |
-
print(f"Resized image to: {image.size}")
|
246 |
|
247 |
-
# GPU ์์
์์
|
248 |
with torch.inference_mode():
|
249 |
try:
|
250 |
-
#
|
251 |
g.trellis_pipeline.to('cuda')
|
252 |
-
torch.cuda.synchronize()
|
253 |
|
254 |
-
#
|
255 |
outputs = g.trellis_pipeline.run(
|
256 |
image,
|
257 |
seed=seed,
|
258 |
formats=["gaussian", "mesh"],
|
259 |
preprocess_image=False,
|
260 |
sparse_structure_sampler_params={
|
261 |
-
"steps": min(ss_sampling_steps,
|
262 |
"cfg_strength": ss_guidance_strength,
|
|
|
263 |
},
|
264 |
slat_sampler_params={
|
265 |
-
"steps": min(slat_sampling_steps,
|
266 |
"cfg_strength": slat_guidance_strength,
|
|
|
267 |
},
|
268 |
)
|
269 |
-
torch.cuda.synchronize()
|
270 |
|
271 |
-
#
|
|
|
|
|
|
|
272 |
video = render_utils.render_video(
|
273 |
outputs['gaussian'][0],
|
274 |
-
num_frames=
|
275 |
-
resolution=
|
276 |
)['color']
|
277 |
-
torch.cuda.synchronize()
|
278 |
|
279 |
video_geo = render_utils.render_video(
|
280 |
outputs['mesh'][0],
|
281 |
-
num_frames=
|
282 |
-
resolution=
|
283 |
)['normal']
|
284 |
-
torch.cuda.synchronize()
|
285 |
|
286 |
-
# CPU๋ก ๋ฐ์ดํฐ ์ด๋
|
287 |
-
video = [v.cpu().numpy()
|
288 |
-
video_geo = [v.cpu().numpy()
|
|
|
289 |
|
|
|
290 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
291 |
new_trial_id = str(uuid.uuid4())
|
292 |
video_path = f"{TMP_DIR}/{new_trial_id}.mp4"
|
293 |
-
os.makedirs(os.path.dirname(video_path), exist_ok=True)
|
294 |
imageio.mimsave(video_path, video, fps=15)
|
295 |
|
296 |
-
# ์ํ ์ ์ฅ
|
297 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], new_trial_id)
|
298 |
-
|
299 |
return state, video_path
|
300 |
|
301 |
finally:
|
302 |
# ์ ๋ฆฌ ์์
|
303 |
g.trellis_pipeline.to('cpu')
|
304 |
-
|
305 |
-
|
306 |
-
torch.cuda.synchronize()
|
307 |
-
gc.collect()
|
308 |
-
|
309 |
except Exception as e:
|
310 |
print(f"Error in image_to_3d: {str(e)}")
|
311 |
-
|
312 |
-
|
313 |
-
if torch.cuda.is_available():
|
314 |
-
torch.cuda.empty_cache()
|
315 |
-
torch.cuda.synchronize()
|
316 |
-
gc.collect()
|
317 |
return None, None
|
318 |
|
319 |
def clear_gpu_memory():
|
320 |
-
"""GPU ๋ฉ๋ชจ๋ฆฌ๋ฅผ ์ ๋ฆฌํ๋
|
321 |
try:
|
322 |
if torch.cuda.is_available():
|
323 |
-
|
324 |
-
|
325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
gc.collect()
|
327 |
except Exception as e:
|
328 |
-
print(f"Error
|
329 |
|
330 |
def move_to_device(model, device):
|
331 |
"""๋ชจ๋ธ์ ์์ ํ๊ฒ ๋๋ฐ์ด์ค๋ก ์ด๋ํ๋ ํจ์"""
|
|
|
34 |
|
35 |
g = GlobalVars()
|
36 |
|
37 |
+
# ํ์ผ ์๋จ์ ์ถ๊ฐ
|
38 |
+
torch.backends.cudnn.benchmark = False # ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ๊ฐ์
|
39 |
+
torch.backends.cudnn.deterministic = True
|
40 |
+
torch.cuda.set_per_process_memory_fraction(0.7) # GPU ๋ฉ๋ชจ๋ฆฌ ์ฌ์ฉ๋ ์ ํ
|
41 |
|
42 |
def initialize_models(device):
|
43 |
try:
|
|
|
88 |
print(f"Error during model initialization: {str(e)}")
|
89 |
raise
|
90 |
|
|
|
|
|
|
|
|
|
91 |
|
92 |
# ํ๊ฒฝ ๋ณ์ ์ค์
|
93 |
# ํ๊ฒฝ ๋ณ์ ์ค์
|
|
|
103 |
# CUDA ์ด๊ธฐํ ๋ฐฉ์ง
|
104 |
torch.set_grad_enabled(False)
|
105 |
|
106 |
+
def periodic_cleanup():
|
107 |
+
"""์ฃผ๊ธฐ์ ์ผ๋ก ์คํ๋ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์"""
|
108 |
+
clear_gpu_memory()
|
109 |
+
return None
|
110 |
+
|
111 |
+
# Gradio ์ธํฐํ์ด์ค์ ์ฃผ๊ธฐ์ ์ ๋ฆฌ ์ถ๊ฐ
|
112 |
+
demo.load(periodic_cleanup, every=5) # 5์ด๋ง๋ค ์ ๋ฆฌ
|
113 |
|
114 |
# Hugging Face ํ ํฐ ์ค์
|
115 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
215 |
return gs, mesh, state['trial_id']
|
216 |
|
217 |
@spaces.GPU
|
218 |
+
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float,
|
219 |
+
ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
|
|
|
|
|
|
|
|
|
|
|
220 |
try:
|
221 |
+
# ์ด๊ธฐ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
222 |
+
clear_gpu_memory()
|
|
|
|
|
|
|
223 |
|
224 |
+
if not trial_id or trial_id.strip() == "":
|
225 |
+
return None, None
|
226 |
|
227 |
image_path = f"{TMP_DIR}/{trial_id}.png"
|
|
|
|
|
228 |
if not os.path.exists(image_path):
|
|
|
229 |
return None, None
|
230 |
|
231 |
image = Image.open(image_path)
|
|
|
232 |
|
233 |
+
# ์ด๋ฏธ์ง ํฌ๊ธฐ ์ ํ ๊ฐํ
|
234 |
+
max_size = 384 # ๋ ์์ ํฌ๊ธฐ๋ก ์ ํ
|
235 |
if max(image.size) > max_size:
|
236 |
ratio = max_size / max(image.size)
|
237 |
new_size = tuple(int(dim * ratio) for dim in image.size)
|
238 |
image = image.resize(new_size, Image.LANCZOS)
|
|
|
239 |
|
|
|
240 |
with torch.inference_mode():
|
241 |
try:
|
242 |
+
# ํ์ดํ๋ผ์ธ์ GPU๋ก ์ด๋
|
243 |
g.trellis_pipeline.to('cuda')
|
|
|
244 |
|
245 |
+
# ๋ฐฐ์น ํฌ๊ธฐ ์ ํ
|
246 |
outputs = g.trellis_pipeline.run(
|
247 |
image,
|
248 |
seed=seed,
|
249 |
formats=["gaussian", "mesh"],
|
250 |
preprocess_image=False,
|
251 |
sparse_structure_sampler_params={
|
252 |
+
"steps": min(ss_sampling_steps, 8), # ์คํ
์ ์ ํ
|
253 |
"cfg_strength": ss_guidance_strength,
|
254 |
+
"batch_size": 1 # ๋ฐฐ์น ํฌ๊ธฐ ๋ช
์์ ์ ํ
|
255 |
},
|
256 |
slat_sampler_params={
|
257 |
+
"steps": min(slat_sampling_steps, 8), # ์คํ
์ ์ ํ
|
258 |
"cfg_strength": slat_guidance_strength,
|
259 |
+
"batch_size": 1
|
260 |
},
|
261 |
)
|
|
|
262 |
|
263 |
+
# ์ค๊ฐ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
264 |
+
clear_gpu_memory()
|
265 |
+
|
266 |
+
# ๋น๋์ค ๋ ๋๋ง ์ต์ ํ
|
267 |
video = render_utils.render_video(
|
268 |
outputs['gaussian'][0],
|
269 |
+
num_frames=30, # ํ๋ ์ ์ ๊ฐ์
|
270 |
+
resolution=384 # ํด์๋ ์ ํ
|
271 |
)['color']
|
|
|
272 |
|
273 |
video_geo = render_utils.render_video(
|
274 |
outputs['mesh'][0],
|
275 |
+
num_frames=30,
|
276 |
+
resolution=384
|
277 |
)['normal']
|
|
|
278 |
|
279 |
+
# CPU๋ก ๋ฐ์ดํฐ ์ด๋ ๋ฐ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
280 |
+
video = [v.cpu().numpy() for v in video]
|
281 |
+
video_geo = [v.cpu().numpy() for v in video_geo]
|
282 |
+
clear_gpu_memory()
|
283 |
|
284 |
+
# ๋๋จธ์ง ์ฒ๋ฆฌ
|
285 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
286 |
new_trial_id = str(uuid.uuid4())
|
287 |
video_path = f"{TMP_DIR}/{new_trial_id}.mp4"
|
|
|
288 |
imageio.mimsave(video_path, video, fps=15)
|
289 |
|
|
|
290 |
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], new_trial_id)
|
|
|
291 |
return state, video_path
|
292 |
|
293 |
finally:
|
294 |
# ์ ๋ฆฌ ์์
|
295 |
g.trellis_pipeline.to('cpu')
|
296 |
+
clear_gpu_memory()
|
297 |
+
|
|
|
|
|
|
|
298 |
except Exception as e:
|
299 |
print(f"Error in image_to_3d: {str(e)}")
|
300 |
+
g.trellis_pipeline.to('cpu')
|
301 |
+
clear_gpu_memory()
|
|
|
|
|
|
|
|
|
302 |
return None, None
|
303 |
|
304 |
def clear_gpu_memory():
|
305 |
+
"""GPU ๋ฉ๋ชจ๋ฆฌ๋ฅผ ๋ ์ฒ ์ ํ๊ฒ ์ ๋ฆฌํ๋ ํจ์"""
|
306 |
try:
|
307 |
if torch.cuda.is_available():
|
308 |
+
# ๋ชจ๋ GPU ์บ์ ์ ๋ฆฌ
|
309 |
+
torch.cuda.empty_cache()
|
310 |
+
torch.cuda.synchronize()
|
311 |
+
|
312 |
+
# ์ฌ์ฉํ์ง ์๋ ์บ์๋ ๋ฉ๋ชจ๋ฆฌ ํด์
|
313 |
+
for i in range(torch.cuda.device_count()):
|
314 |
+
with torch.cuda.device(i):
|
315 |
+
torch.cuda.empty_cache()
|
316 |
+
torch.cuda.ipc_collect()
|
317 |
+
|
318 |
+
# Python ๊ฐ๋น์ง ์ปฌ๋ ํฐ ์คํ
|
319 |
gc.collect()
|
320 |
except Exception as e:
|
321 |
+
print(f"Error in clear_gpu_memory: {e}")
|
322 |
|
323 |
def move_to_device(model, device):
|
324 |
"""๋ชจ๋ธ์ ์์ ํ๊ฒ ๋๋ฐ์ด์ค๋ก ์ด๋ํ๋ ํจ์"""
|