Spaces:
ginipick
/
Running on Zero

File size: 31,233 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
# code adapted from: https://github.com/Stability-AI/stable-audio-tools

from comfy.ldm.modules.attention import optimized_attention
import typing as tp

import torch

from einops import rearrange
from torch import nn
from torch.nn import functional as F
import math
import comfy.ops

class FourierFeatures(nn.Module):
    def __init__(self, in_features, out_features, std=1., dtype=None, device=None):
        super().__init__()
        assert out_features % 2 == 0
        self.weight = nn.Parameter(torch.empty(
            [out_features // 2, in_features], dtype=dtype, device=device))

    def forward(self, input):
        f = 2 * math.pi * input @ comfy.ops.cast_to_input(self.weight.T, input)
        return torch.cat([f.cos(), f.sin()], dim=-1)

# norms
class LayerNorm(nn.Module):
    def __init__(self, dim, bias=False, fix_scale=False, dtype=None, device=None):
        """
        bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
        """
        super().__init__()

        self.gamma = nn.Parameter(torch.empty(dim, dtype=dtype, device=device))

        if bias:
            self.beta = nn.Parameter(torch.empty(dim, dtype=dtype, device=device))
        else:
            self.beta = None

    def forward(self, x):
        beta = self.beta
        if beta is not None:
            beta = comfy.ops.cast_to_input(beta, x)
        return F.layer_norm(x, x.shape[-1:], weight=comfy.ops.cast_to_input(self.gamma, x), bias=beta)

class GLU(nn.Module):
    def __init__(
        self,
        dim_in,
        dim_out,
        activation,
        use_conv = False,
        conv_kernel_size = 3,
        dtype=None,
        device=None,
        operations=None,
    ):
        super().__init__()
        self.act = activation
        self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim_in, dim_out * 2, conv_kernel_size, padding = (conv_kernel_size // 2), dtype=dtype, device=device)
        self.use_conv = use_conv

    def forward(self, x):
        if self.use_conv:
            x = rearrange(x, 'b n d -> b d n')
            x = self.proj(x)
            x = rearrange(x, 'b d n -> b n d')
        else:
            x = self.proj(x)

        x, gate = x.chunk(2, dim = -1)
        return x * self.act(gate)

class AbsolutePositionalEmbedding(nn.Module):
    def __init__(self, dim, max_seq_len):
        super().__init__()
        self.scale = dim ** -0.5
        self.max_seq_len = max_seq_len
        self.emb = nn.Embedding(max_seq_len, dim)

    def forward(self, x, pos = None, seq_start_pos = None):
        seq_len, device = x.shape[1], x.device
        assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'

        if pos is None:
            pos = torch.arange(seq_len, device = device)

        if seq_start_pos is not None:
            pos = (pos - seq_start_pos[..., None]).clamp(min = 0)

        pos_emb = self.emb(pos)
        pos_emb = pos_emb * self.scale
        return pos_emb

class ScaledSinusoidalEmbedding(nn.Module):
    def __init__(self, dim, theta = 10000):
        super().__init__()
        assert (dim % 2) == 0, 'dimension must be divisible by 2'
        self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)

        half_dim = dim // 2
        freq_seq = torch.arange(half_dim).float() / half_dim
        inv_freq = theta ** -freq_seq
        self.register_buffer('inv_freq', inv_freq, persistent = False)

    def forward(self, x, pos = None, seq_start_pos = None):
        seq_len, device = x.shape[1], x.device

        if pos is None:
            pos = torch.arange(seq_len, device = device)

        if seq_start_pos is not None:
            pos = pos - seq_start_pos[..., None]

        emb = torch.einsum('i, j -> i j', pos, self.inv_freq)
        emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
        return emb * self.scale

class RotaryEmbedding(nn.Module):
    def __init__(
        self,
        dim,
        use_xpos = False,
        scale_base = 512,
        interpolation_factor = 1.,
        base = 10000,
        base_rescale_factor = 1.,
        dtype=None,
        device=None,
    ):
        super().__init__()
        # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
        # has some connection to NTK literature
        # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
        base *= base_rescale_factor ** (dim / (dim - 2))

        # inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.register_buffer('inv_freq', torch.empty((dim // 2,), device=device, dtype=dtype))

        assert interpolation_factor >= 1.
        self.interpolation_factor = interpolation_factor

        if not use_xpos:
            self.register_buffer('scale', None)
            return

        scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)

        self.scale_base = scale_base
        self.register_buffer('scale', scale)

    def forward_from_seq_len(self, seq_len, device, dtype):
        # device = self.inv_freq.device

        t = torch.arange(seq_len, device=device, dtype=dtype)
        return self.forward(t)

    def forward(self, t):
        # device = self.inv_freq.device
        device = t.device
        dtype = t.dtype

        # t = t.to(torch.float32)

        t = t / self.interpolation_factor

        freqs = torch.einsum('i , j -> i j', t, comfy.ops.cast_to_input(self.inv_freq, t))
        freqs = torch.cat((freqs, freqs), dim = -1)

        if self.scale is None:
            return freqs, 1.

        power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
        scale = comfy.ops.cast_to_input(self.scale, t) ** rearrange(power, 'n -> n 1')
        scale = torch.cat((scale, scale), dim = -1)

        return freqs, scale

def rotate_half(x):
    x = rearrange(x, '... (j d) -> ... j d', j = 2)
    x1, x2 = x.unbind(dim = -2)
    return torch.cat((-x2, x1), dim = -1)

def apply_rotary_pos_emb(t, freqs, scale = 1):
    out_dtype = t.dtype

    # cast to float32 if necessary for numerical stability
    dtype = t.dtype #reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32))
    rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
    freqs, t = freqs.to(dtype), t.to(dtype)
    freqs = freqs[-seq_len:, :]

    if t.ndim == 4 and freqs.ndim == 3:
        freqs = rearrange(freqs, 'b n d -> b 1 n d')

    # partial rotary embeddings, Wang et al. GPT-J
    t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
    t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)

    t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype)

    return torch.cat((t, t_unrotated), dim = -1)

class FeedForward(nn.Module):
    def __init__(
        self,
        dim,
        dim_out = None,
        mult = 4,
        no_bias = False,
        glu = True,
        use_conv = False,
        conv_kernel_size = 3,
        zero_init_output = True,
        dtype=None,
        device=None,
        operations=None,
    ):
        super().__init__()
        inner_dim = int(dim * mult)

        # Default to SwiGLU

        activation = nn.SiLU()

        dim_out = dim if dim_out is None else dim_out

        if glu:
            linear_in = GLU(dim, inner_dim, activation, dtype=dtype, device=device, operations=operations)
        else:
            linear_in = nn.Sequential(
                Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
                operations.Linear(dim, inner_dim, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim, inner_dim, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device),
                Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
                activation
            )

        linear_out = operations.Linear(inner_dim, dim_out, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(inner_dim, dim_out, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device)

        # # init last linear layer to 0
        # if zero_init_output:
        #     nn.init.zeros_(linear_out.weight)
        #     if not no_bias:
        #         nn.init.zeros_(linear_out.bias)


        self.ff = nn.Sequential(
            linear_in,
            Rearrange('b d n -> b n d') if use_conv else nn.Identity(),
            linear_out,
            Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
        )

    def forward(self, x):
        return self.ff(x)

class Attention(nn.Module):
    def __init__(
        self,
        dim,
        dim_heads = 64,
        dim_context = None,
        causal = False,
        zero_init_output=True,
        qk_norm = False,
        natten_kernel_size = None,
        dtype=None,
        device=None,
        operations=None,
    ):
        super().__init__()
        self.dim = dim
        self.dim_heads = dim_heads
        self.causal = causal

        dim_kv = dim_context if dim_context is not None else dim

        self.num_heads = dim // dim_heads
        self.kv_heads = dim_kv // dim_heads

        if dim_context is not None:
            self.to_q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
            self.to_kv = operations.Linear(dim_kv, dim_kv * 2, bias=False, dtype=dtype, device=device)
        else:
            self.to_qkv = operations.Linear(dim, dim * 3, bias=False, dtype=dtype, device=device)

        self.to_out = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)

        # if zero_init_output:
        #     nn.init.zeros_(self.to_out.weight)

        self.qk_norm = qk_norm


    def forward(
        self,
        x,
        context = None,
        mask = None,
        context_mask = None,
        rotary_pos_emb = None,
        causal = None
    ):
        h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None

        kv_input = context if has_context else x

        if hasattr(self, 'to_q'):
            # Use separate linear projections for q and k/v
            q = self.to_q(x)
            q = rearrange(q, 'b n (h d) -> b h n d', h = h)

            k, v = self.to_kv(kv_input).chunk(2, dim=-1)

            k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = kv_h), (k, v))
        else:
            # Use fused linear projection
            q, k, v = self.to_qkv(x).chunk(3, dim=-1)
            q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))

        # Normalize q and k for cosine sim attention
        if self.qk_norm:
            q = F.normalize(q, dim=-1)
            k = F.normalize(k, dim=-1)

        if rotary_pos_emb is not None and not has_context:
            freqs, _ = rotary_pos_emb

            q_dtype = q.dtype
            k_dtype = k.dtype

            q = q.to(torch.float32)
            k = k.to(torch.float32)
            freqs = freqs.to(torch.float32)

            q = apply_rotary_pos_emb(q, freqs)
            k = apply_rotary_pos_emb(k, freqs)

            q = q.to(q_dtype)
            k = k.to(k_dtype)

        input_mask = context_mask

        if input_mask is None and not has_context:
            input_mask = mask

        # determine masking
        masks = []
        final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account

        if input_mask is not None:
            input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
            masks.append(~input_mask)

        # Other masks will be added here later

        if len(masks) > 0:
            final_attn_mask = ~or_reduce(masks)

        n, device = q.shape[-2], q.device

        causal = self.causal if causal is None else causal

        if n == 1 and causal:
            causal = False

        if h != kv_h:
            # Repeat interleave kv_heads to match q_heads
            heads_per_kv_head = h // kv_h
            k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))

        out = optimized_attention(q, k, v, h, skip_reshape=True)
        out = self.to_out(out)

        if mask is not None:
            mask = rearrange(mask, 'b n -> b n 1')
            out = out.masked_fill(~mask, 0.)

        return out

class ConformerModule(nn.Module):
    def __init__(
        self,
        dim,
        norm_kwargs = {},
    ):

        super().__init__()

        self.dim = dim

        self.in_norm = LayerNorm(dim, **norm_kwargs)
        self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
        self.glu = GLU(dim, dim, nn.SiLU())
        self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False)
        self.mid_norm = LayerNorm(dim, **norm_kwargs) # This is a batch norm in the original but I don't like batch norm
        self.swish = nn.SiLU()
        self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False)

    def forward(self, x):
        x = self.in_norm(x)
        x = rearrange(x, 'b n d -> b d n')
        x = self.pointwise_conv(x)
        x = rearrange(x, 'b d n -> b n d')
        x = self.glu(x)
        x = rearrange(x, 'b n d -> b d n')
        x = self.depthwise_conv(x)
        x = rearrange(x, 'b d n -> b n d')
        x = self.mid_norm(x)
        x = self.swish(x)
        x = rearrange(x, 'b n d -> b d n')
        x = self.pointwise_conv_2(x)
        x = rearrange(x, 'b d n -> b n d')

        return x

class TransformerBlock(nn.Module):
    def __init__(
            self,
            dim,
            dim_heads = 64,
            cross_attend = False,
            dim_context = None,
            global_cond_dim = None,
            causal = False,
            zero_init_branch_outputs = True,
            conformer = False,
            layer_ix = -1,
            remove_norms = False,
            attn_kwargs = {},
            ff_kwargs = {},
            norm_kwargs = {},
            dtype=None,
            device=None,
            operations=None,
    ):

        super().__init__()
        self.dim = dim
        self.dim_heads = dim_heads
        self.cross_attend = cross_attend
        self.dim_context = dim_context
        self.causal = causal

        self.pre_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()

        self.self_attn = Attention(
            dim,
            dim_heads = dim_heads,
            causal = causal,
            zero_init_output=zero_init_branch_outputs,
            dtype=dtype,
            device=device,
            operations=operations,
            **attn_kwargs
        )

        if cross_attend:
            self.cross_attend_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()
            self.cross_attn = Attention(
                dim,
                dim_heads = dim_heads,
                dim_context=dim_context,
                causal = causal,
                zero_init_output=zero_init_branch_outputs,
                dtype=dtype,
                device=device,
                operations=operations,
                **attn_kwargs
            )

        self.ff_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity()
        self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, dtype=dtype, device=device, operations=operations,**ff_kwargs)

        self.layer_ix = layer_ix

        self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None

        self.global_cond_dim = global_cond_dim

        if global_cond_dim is not None:
            self.to_scale_shift_gate = nn.Sequential(
                nn.SiLU(),
                nn.Linear(global_cond_dim, dim * 6, bias=False)
            )

            nn.init.zeros_(self.to_scale_shift_gate[1].weight)
            #nn.init.zeros_(self.to_scale_shift_gate_self[1].bias)

    def forward(
        self,
        x,
        context = None,
        global_cond=None,
        mask = None,
        context_mask = None,
        rotary_pos_emb = None
    ):
        if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:

            scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(global_cond).unsqueeze(1).chunk(6, dim = -1)

            # self-attention with adaLN
            residual = x
            x = self.pre_norm(x)
            x = x * (1 + scale_self) + shift_self
            x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb)
            x = x * torch.sigmoid(1 - gate_self)
            x = x + residual

            if context is not None:
                x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)

            if self.conformer is not None:
                x = x + self.conformer(x)

            # feedforward with adaLN
            residual = x
            x = self.ff_norm(x)
            x = x * (1 + scale_ff) + shift_ff
            x = self.ff(x)
            x = x * torch.sigmoid(1 - gate_ff)
            x = x + residual

        else:
            x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb)

            if context is not None:
                x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)

            if self.conformer is not None:
                x = x + self.conformer(x)

            x = x + self.ff(self.ff_norm(x))

        return x

class ContinuousTransformer(nn.Module):
    def __init__(
        self,
        dim,
        depth,
        *,
        dim_in = None,
        dim_out = None,
        dim_heads = 64,
        cross_attend=False,
        cond_token_dim=None,
        global_cond_dim=None,
        causal=False,
        rotary_pos_emb=True,
        zero_init_branch_outputs=True,
        conformer=False,
        use_sinusoidal_emb=False,
        use_abs_pos_emb=False,
        abs_pos_emb_max_length=10000,
        dtype=None,
        device=None,
        operations=None,
        **kwargs
        ):

        super().__init__()

        self.dim = dim
        self.depth = depth
        self.causal = causal
        self.layers = nn.ModuleList([])

        self.project_in = operations.Linear(dim_in, dim, bias=False, dtype=dtype, device=device) if dim_in is not None else nn.Identity()
        self.project_out = operations.Linear(dim, dim_out, bias=False, dtype=dtype, device=device) if dim_out is not None else nn.Identity()

        if rotary_pos_emb:
            self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32), device=device, dtype=dtype)
        else:
            self.rotary_pos_emb = None

        self.use_sinusoidal_emb = use_sinusoidal_emb
        if use_sinusoidal_emb:
            self.pos_emb = ScaledSinusoidalEmbedding(dim)

        self.use_abs_pos_emb = use_abs_pos_emb
        if use_abs_pos_emb:
            self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length)

        for i in range(depth):
            self.layers.append(
                TransformerBlock(
                    dim,
                    dim_heads = dim_heads,
                    cross_attend = cross_attend,
                    dim_context = cond_token_dim,
                    global_cond_dim = global_cond_dim,
                    causal = causal,
                    zero_init_branch_outputs = zero_init_branch_outputs,
                    conformer=conformer,
                    layer_ix=i,
                    dtype=dtype,
                    device=device,
                    operations=operations,
                    **kwargs
                )
            )

    def forward(
        self,
        x,
        mask = None,
        prepend_embeds = None,
        prepend_mask = None,
        global_cond = None,
        return_info = False,
        **kwargs
    ):
        patches_replace = kwargs.get("transformer_options", {}).get("patches_replace", {})
        batch, seq, device = *x.shape[:2], x.device
        context = kwargs["context"]

        info = {
            "hidden_states": [],
        }

        x = self.project_in(x)

        if prepend_embeds is not None:
            prepend_length, prepend_dim = prepend_embeds.shape[1:]

            assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension'

            x = torch.cat((prepend_embeds, x), dim = -2)

            if prepend_mask is not None or mask is not None:
                mask = mask if mask is not None else torch.ones((batch, seq), device = device, dtype = torch.bool)
                prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length), device = device, dtype = torch.bool)

                mask = torch.cat((prepend_mask, mask), dim = -1)

        # Attention layers

        if self.rotary_pos_emb is not None:
            rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=x.dtype, device=x.device)
        else:
            rotary_pos_emb = None

        if self.use_sinusoidal_emb or self.use_abs_pos_emb:
            x = x + self.pos_emb(x)

        blocks_replace = patches_replace.get("dit", {})
        # Iterate over the transformer layers
        for i, layer in enumerate(self.layers):
            if ("double_block", i) in blocks_replace:
                def block_wrap(args):
                    out = {}
                    out["img"] = layer(args["img"], rotary_pos_emb=args["pe"], global_cond=args["vec"], context=args["txt"])
                    return out

                out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": global_cond, "pe": rotary_pos_emb}, {"original_block": block_wrap})
                x = out["img"]
            else:
                x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, context=context)
            # x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)

            if return_info:
                info["hidden_states"].append(x)

        x = self.project_out(x)

        if return_info:
            return x, info

        return x

class AudioDiffusionTransformer(nn.Module):
    def __init__(self,
        io_channels=64,
        patch_size=1,
        embed_dim=1536,
        cond_token_dim=768,
        project_cond_tokens=False,
        global_cond_dim=1536,
        project_global_cond=True,
        input_concat_dim=0,
        prepend_cond_dim=0,
        depth=24,
        num_heads=24,
        transformer_type: tp.Literal["continuous_transformer"] = "continuous_transformer",
        global_cond_type: tp.Literal["prepend", "adaLN"] = "prepend",
        audio_model="",
        dtype=None,
        device=None,
        operations=None,
        **kwargs):

        super().__init__()

        self.dtype = dtype
        self.cond_token_dim = cond_token_dim

        # Timestep embeddings
        timestep_features_dim = 256

        self.timestep_features = FourierFeatures(1, timestep_features_dim, dtype=dtype, device=device)

        self.to_timestep_embed = nn.Sequential(
            operations.Linear(timestep_features_dim, embed_dim, bias=True, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device),
        )

        if cond_token_dim > 0:
            # Conditioning tokens

            cond_embed_dim = cond_token_dim if not project_cond_tokens else embed_dim
            self.to_cond_embed = nn.Sequential(
                operations.Linear(cond_token_dim, cond_embed_dim, bias=False, dtype=dtype, device=device),
                nn.SiLU(),
                operations.Linear(cond_embed_dim, cond_embed_dim, bias=False, dtype=dtype, device=device)
            )
        else:
            cond_embed_dim = 0

        if global_cond_dim > 0:
            # Global conditioning
            global_embed_dim = global_cond_dim if not project_global_cond else embed_dim
            self.to_global_embed = nn.Sequential(
                operations.Linear(global_cond_dim, global_embed_dim, bias=False, dtype=dtype, device=device),
                nn.SiLU(),
                operations.Linear(global_embed_dim, global_embed_dim, bias=False, dtype=dtype, device=device)
            )

        if prepend_cond_dim > 0:
            # Prepend conditioning
            self.to_prepend_embed = nn.Sequential(
                operations.Linear(prepend_cond_dim, embed_dim, bias=False, dtype=dtype, device=device),
                nn.SiLU(),
                operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
            )

        self.input_concat_dim = input_concat_dim

        dim_in = io_channels + self.input_concat_dim

        self.patch_size = patch_size

        # Transformer

        self.transformer_type = transformer_type

        self.global_cond_type = global_cond_type

        if self.transformer_type == "continuous_transformer":

            global_dim = None

            if self.global_cond_type == "adaLN":
                # The global conditioning is projected to the embed_dim already at this point
                global_dim = embed_dim

            self.transformer = ContinuousTransformer(
                dim=embed_dim,
                depth=depth,
                dim_heads=embed_dim // num_heads,
                dim_in=dim_in * patch_size,
                dim_out=io_channels * patch_size,
                cross_attend = cond_token_dim > 0,
                cond_token_dim = cond_embed_dim,
                global_cond_dim=global_dim,
                dtype=dtype,
                device=device,
                operations=operations,
                **kwargs
            )
        else:
            raise ValueError(f"Unknown transformer type: {self.transformer_type}")

        self.preprocess_conv = operations.Conv1d(dim_in, dim_in, 1, bias=False, dtype=dtype, device=device)
        self.postprocess_conv = operations.Conv1d(io_channels, io_channels, 1, bias=False, dtype=dtype, device=device)

    def _forward(
        self,
        x,
        t,
        mask=None,
        cross_attn_cond=None,
        cross_attn_cond_mask=None,
        input_concat_cond=None,
        global_embed=None,
        prepend_cond=None,
        prepend_cond_mask=None,
        return_info=False,
        **kwargs):

        if cross_attn_cond is not None:
            cross_attn_cond = self.to_cond_embed(cross_attn_cond)

        if global_embed is not None:
            # Project the global conditioning to the embedding dimension
            global_embed = self.to_global_embed(global_embed)

        prepend_inputs = None
        prepend_mask = None
        prepend_length = 0
        if prepend_cond is not None:
            # Project the prepend conditioning to the embedding dimension
            prepend_cond = self.to_prepend_embed(prepend_cond)

            prepend_inputs = prepend_cond
            if prepend_cond_mask is not None:
                prepend_mask = prepend_cond_mask

        if input_concat_cond is not None:

            # Interpolate input_concat_cond to the same length as x
            if input_concat_cond.shape[2] != x.shape[2]:
                input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2], ), mode='nearest')

            x = torch.cat([x, input_concat_cond], dim=1)

        # Get the batch of timestep embeddings
        timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None]).to(x.dtype)) # (b, embed_dim)

        # Timestep embedding is considered a global embedding. Add to the global conditioning if it exists
        if global_embed is not None:
            global_embed = global_embed + timestep_embed
        else:
            global_embed = timestep_embed

        # Add the global_embed to the prepend inputs if there is no global conditioning support in the transformer
        if self.global_cond_type == "prepend":
            if prepend_inputs is None:
                # Prepend inputs are just the global embed, and the mask is all ones
                prepend_inputs = global_embed.unsqueeze(1)
                prepend_mask = torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)
            else:
                # Prepend inputs are the prepend conditioning + the global embed
                prepend_inputs = torch.cat([prepend_inputs, global_embed.unsqueeze(1)], dim=1)
                prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)], dim=1)

            prepend_length = prepend_inputs.shape[1]

        x = self.preprocess_conv(x) + x

        x = rearrange(x, "b c t -> b t c")

        extra_args = {}

        if self.global_cond_type == "adaLN":
            extra_args["global_cond"] = global_embed

        if self.patch_size > 1:
            x = rearrange(x, "b (t p) c -> b t (c p)", p=self.patch_size)

        if self.transformer_type == "x-transformers":
            output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, **extra_args, **kwargs)
        elif self.transformer_type == "continuous_transformer":
            output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, return_info=return_info, **extra_args, **kwargs)

            if return_info:
                output, info = output
        elif self.transformer_type == "mm_transformer":
            output = self.transformer(x, context=cross_attn_cond, mask=mask, context_mask=cross_attn_cond_mask, **extra_args, **kwargs)

        output = rearrange(output, "b t c -> b c t")[:,:,prepend_length:]

        if self.patch_size > 1:
            output = rearrange(output, "b (c p) t -> b c (t p)", p=self.patch_size)

        output = self.postprocess_conv(output) + output

        if return_info:
            return output, info

        return output

    def forward(
        self,
        x,
        timestep,
        context=None,
        context_mask=None,
        input_concat_cond=None,
        global_embed=None,
        negative_global_embed=None,
        prepend_cond=None,
        prepend_cond_mask=None,
        mask=None,
        return_info=False,
        control=None,
        **kwargs):
            return self._forward(
                x,
                timestep,
                cross_attn_cond=context,
                cross_attn_cond_mask=context_mask,
                input_concat_cond=input_concat_cond,
                global_embed=global_embed,
                prepend_cond=prepend_cond,
                prepend_cond_mask=prepend_cond_mask,
                mask=mask,
                return_info=return_info,
                **kwargs
            )