Spaces:
ginipick
/
Running on Zero

File size: 3,471 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# code adapted from: https://github.com/Stability-AI/stable-audio-tools

import torch
import torch.nn as nn
from torch import Tensor, einsum
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, TypeVar, Union
from einops import rearrange
import math
import comfy.ops

class LearnedPositionalEmbedding(nn.Module):
    """Used for continuous time"""

    def __init__(self, dim: int):
        super().__init__()
        assert (dim % 2) == 0
        half_dim = dim // 2
        self.weights = nn.Parameter(torch.empty(half_dim))

    def forward(self, x: Tensor) -> Tensor:
        x = rearrange(x, "b -> b 1")
        freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * math.pi
        fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
        fouriered = torch.cat((x, fouriered), dim=-1)
        return fouriered

def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module:
    return nn.Sequential(
        LearnedPositionalEmbedding(dim),
        comfy.ops.manual_cast.Linear(in_features=dim + 1, out_features=out_features),
    )


class NumberEmbedder(nn.Module):
    def __init__(
        self,
        features: int,
        dim: int = 256,
    ):
        super().__init__()
        self.features = features
        self.embedding = TimePositionalEmbedding(dim=dim, out_features=features)

    def forward(self, x: Union[List[float], Tensor]) -> Tensor:
        if not torch.is_tensor(x):
            device = next(self.embedding.parameters()).device
            x = torch.tensor(x, device=device)
        assert isinstance(x, Tensor)
        shape = x.shape
        x = rearrange(x, "... -> (...)")
        embedding = self.embedding(x)
        x = embedding.view(*shape, self.features)
        return x  # type: ignore


class Conditioner(nn.Module):
    def __init__(
            self,
            dim: int,
            output_dim: int,
            project_out: bool = False
            ):

        super().__init__()

        self.dim = dim
        self.output_dim = output_dim
        self.proj_out = nn.Linear(dim, output_dim) if (dim != output_dim or project_out) else nn.Identity()

    def forward(self, x):
        raise NotImplementedError()

class NumberConditioner(Conditioner):
    '''
        Conditioner that takes a list of floats, normalizes them for a given range, and returns a list of embeddings
    '''
    def __init__(self,
                output_dim: int,
                min_val: float=0,
                max_val: float=1
                ):
        super().__init__(output_dim, output_dim)

        self.min_val = min_val
        self.max_val = max_val

        self.embedder = NumberEmbedder(features=output_dim)

    def forward(self, floats, device=None):
            # Cast the inputs to floats
            floats = [float(x) for x in floats]

            if device is None:
                device = next(self.embedder.parameters()).device

            floats = torch.tensor(floats).to(device)

            floats = floats.clamp(self.min_val, self.max_val)

            normalized_floats = (floats - self.min_val) / (self.max_val - self.min_val)

            # Cast floats to same type as embedder
            embedder_dtype = next(self.embedder.parameters()).dtype
            normalized_floats = normalized_floats.to(embedder_dtype)

            float_embeds = self.embedder(normalized_floats).unsqueeze(1)

            return [float_embeds, torch.ones(float_embeds.shape[0], 1).to(device)]