Spaces:
ginipick
/
Running on Zero

File size: 19,528 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
#AuraFlow MMDiT
#Originally written by the AuraFlow Authors

import math

import torch
import torch.nn as nn
import torch.nn.functional as F

from comfy.ldm.modules.attention import optimized_attention
import comfy.ops
import comfy.ldm.common_dit

def modulate(x, shift, scale):
    return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)


def find_multiple(n: int, k: int) -> int:
    if n % k == 0:
        return n
    return n + k - (n % k)


class MLP(nn.Module):
    def __init__(self, dim, hidden_dim=None, dtype=None, device=None, operations=None) -> None:
        super().__init__()
        if hidden_dim is None:
            hidden_dim = 4 * dim

        n_hidden = int(2 * hidden_dim / 3)
        n_hidden = find_multiple(n_hidden, 256)

        self.c_fc1 = operations.Linear(dim, n_hidden, bias=False, dtype=dtype, device=device)
        self.c_fc2 = operations.Linear(dim, n_hidden, bias=False, dtype=dtype, device=device)
        self.c_proj = operations.Linear(n_hidden, dim, bias=False, dtype=dtype, device=device)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = F.silu(self.c_fc1(x)) * self.c_fc2(x)
        x = self.c_proj(x)
        return x


class MultiHeadLayerNorm(nn.Module):
    def __init__(self, hidden_size=None, eps=1e-5, dtype=None, device=None):
        # Copy pasta from https://github.com/huggingface/transformers/blob/e5f71ecaae50ea476d1e12351003790273c4b2ed/src/transformers/models/cohere/modeling_cohere.py#L78

        super().__init__()
        self.weight = nn.Parameter(torch.empty(hidden_size, dtype=dtype, device=device))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        mean = hidden_states.mean(-1, keepdim=True)
        variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
        hidden_states = (hidden_states - mean) * torch.rsqrt(
            variance + self.variance_epsilon
        )
        hidden_states = self.weight.to(torch.float32) * hidden_states
        return hidden_states.to(input_dtype)

class SingleAttention(nn.Module):
    def __init__(self, dim, n_heads, mh_qknorm=False, dtype=None, device=None, operations=None):
        super().__init__()

        self.n_heads = n_heads
        self.head_dim = dim // n_heads

        # this is for cond
        self.w1q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
        self.w1k = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
        self.w1v = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
        self.w1o = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)

        self.q_norm1 = (
            MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
            if mh_qknorm
            else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
        )
        self.k_norm1 = (
            MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
            if mh_qknorm
            else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
        )

    #@torch.compile()
    def forward(self, c):

        bsz, seqlen1, _ = c.shape

        q, k, v = self.w1q(c), self.w1k(c), self.w1v(c)
        q = q.view(bsz, seqlen1, self.n_heads, self.head_dim)
        k = k.view(bsz, seqlen1, self.n_heads, self.head_dim)
        v = v.view(bsz, seqlen1, self.n_heads, self.head_dim)
        q, k = self.q_norm1(q), self.k_norm1(k)

        output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True)
        c = self.w1o(output)
        return c



class DoubleAttention(nn.Module):
    def __init__(self, dim, n_heads, mh_qknorm=False, dtype=None, device=None, operations=None):
        super().__init__()

        self.n_heads = n_heads
        self.head_dim = dim // n_heads

        # this is for cond
        self.w1q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
        self.w1k = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
        self.w1v = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
        self.w1o = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)

        # this is for x
        self.w2q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
        self.w2k = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
        self.w2v = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)
        self.w2o = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device)

        self.q_norm1 = (
            MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
            if mh_qknorm
            else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
        )
        self.k_norm1 = (
            MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
            if mh_qknorm
            else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
        )

        self.q_norm2 = (
            MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
            if mh_qknorm
            else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
        )
        self.k_norm2 = (
            MultiHeadLayerNorm((self.n_heads, self.head_dim), dtype=dtype, device=device)
            if mh_qknorm
            else operations.LayerNorm(self.head_dim, elementwise_affine=False, dtype=dtype, device=device)
        )


    #@torch.compile()
    def forward(self, c, x):

        bsz, seqlen1, _ = c.shape
        bsz, seqlen2, _ = x.shape
        seqlen = seqlen1 + seqlen2

        cq, ck, cv = self.w1q(c), self.w1k(c), self.w1v(c)
        cq = cq.view(bsz, seqlen1, self.n_heads, self.head_dim)
        ck = ck.view(bsz, seqlen1, self.n_heads, self.head_dim)
        cv = cv.view(bsz, seqlen1, self.n_heads, self.head_dim)
        cq, ck = self.q_norm1(cq), self.k_norm1(ck)

        xq, xk, xv = self.w2q(x), self.w2k(x), self.w2v(x)
        xq = xq.view(bsz, seqlen2, self.n_heads, self.head_dim)
        xk = xk.view(bsz, seqlen2, self.n_heads, self.head_dim)
        xv = xv.view(bsz, seqlen2, self.n_heads, self.head_dim)
        xq, xk = self.q_norm2(xq), self.k_norm2(xk)

        # concat all
        q, k, v = (
            torch.cat([cq, xq], dim=1),
            torch.cat([ck, xk], dim=1),
            torch.cat([cv, xv], dim=1),
        )

        output = optimized_attention(q.permute(0, 2, 1, 3), k.permute(0, 2, 1, 3), v.permute(0, 2, 1, 3), self.n_heads, skip_reshape=True)

        c, x = output.split([seqlen1, seqlen2], dim=1)
        c = self.w1o(c)
        x = self.w2o(x)

        return c, x


class MMDiTBlock(nn.Module):
    def __init__(self, dim, heads=8, global_conddim=1024, is_last=False, dtype=None, device=None, operations=None):
        super().__init__()

        self.normC1 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
        self.normC2 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
        if not is_last:
            self.mlpC = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations)
            self.modC = nn.Sequential(
                nn.SiLU(),
                operations.Linear(global_conddim, 6 * dim, bias=False, dtype=dtype, device=device),
            )
        else:
            self.modC = nn.Sequential(
                nn.SiLU(),
                operations.Linear(global_conddim, 2 * dim, bias=False, dtype=dtype, device=device),
            )

        self.normX1 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
        self.normX2 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
        self.mlpX = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations)
        self.modX = nn.Sequential(
            nn.SiLU(),
            operations.Linear(global_conddim, 6 * dim, bias=False, dtype=dtype, device=device),
        )

        self.attn = DoubleAttention(dim, heads, dtype=dtype, device=device, operations=operations)
        self.is_last = is_last

    #@torch.compile()
    def forward(self, c, x, global_cond, **kwargs):

        cres, xres = c, x

        cshift_msa, cscale_msa, cgate_msa, cshift_mlp, cscale_mlp, cgate_mlp = (
            self.modC(global_cond).chunk(6, dim=1)
        )

        c = modulate(self.normC1(c), cshift_msa, cscale_msa)

        # xpath
        xshift_msa, xscale_msa, xgate_msa, xshift_mlp, xscale_mlp, xgate_mlp = (
            self.modX(global_cond).chunk(6, dim=1)
        )

        x = modulate(self.normX1(x), xshift_msa, xscale_msa)

        # attention
        c, x = self.attn(c, x)


        c = self.normC2(cres + cgate_msa.unsqueeze(1) * c)
        c = cgate_mlp.unsqueeze(1) * self.mlpC(modulate(c, cshift_mlp, cscale_mlp))
        c = cres + c

        x = self.normX2(xres + xgate_msa.unsqueeze(1) * x)
        x = xgate_mlp.unsqueeze(1) * self.mlpX(modulate(x, xshift_mlp, xscale_mlp))
        x = xres + x

        return c, x

class DiTBlock(nn.Module):
    # like MMDiTBlock, but it only has X
    def __init__(self, dim, heads=8, global_conddim=1024, dtype=None, device=None, operations=None):
        super().__init__()

        self.norm1 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)
        self.norm2 = operations.LayerNorm(dim, elementwise_affine=False, dtype=dtype, device=device)

        self.modCX = nn.Sequential(
            nn.SiLU(),
            operations.Linear(global_conddim, 6 * dim, bias=False, dtype=dtype, device=device),
        )

        self.attn = SingleAttention(dim, heads, dtype=dtype, device=device, operations=operations)
        self.mlp = MLP(dim, hidden_dim=dim * 4, dtype=dtype, device=device, operations=operations)

    #@torch.compile()
    def forward(self, cx, global_cond, **kwargs):
        cxres = cx
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.modCX(
            global_cond
        ).chunk(6, dim=1)
        cx = modulate(self.norm1(cx), shift_msa, scale_msa)
        cx = self.attn(cx)
        cx = self.norm2(cxres + gate_msa.unsqueeze(1) * cx)
        mlpout = self.mlp(modulate(cx, shift_mlp, scale_mlp))
        cx = gate_mlp.unsqueeze(1) * mlpout

        cx = cxres + cx

        return cx



class TimestepEmbedder(nn.Module):
    def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None):
        super().__init__()
        self.mlp = nn.Sequential(
            operations.Linear(frequency_embedding_size, hidden_size, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Linear(hidden_size, hidden_size, dtype=dtype, device=device),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        half = dim // 2
        freqs = 1000 * torch.exp(
            -math.log(max_period) * torch.arange(start=0, end=half) / half
        ).to(t.device)
        args = t[:, None] * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat(
                [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
            )
        return embedding

    #@torch.compile()
    def forward(self, t, dtype):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
        t_emb = self.mlp(t_freq)
        return t_emb


class MMDiT(nn.Module):
    def __init__(
        self,
        in_channels=4,
        out_channels=4,
        patch_size=2,
        dim=3072,
        n_layers=36,
        n_double_layers=4,
        n_heads=12,
        global_conddim=3072,
        cond_seq_dim=2048,
        max_seq=32 * 32,
        device=None,
        dtype=None,
        operations=None,
    ):
        super().__init__()
        self.dtype = dtype

        self.t_embedder = TimestepEmbedder(global_conddim, dtype=dtype, device=device, operations=operations)

        self.cond_seq_linear = operations.Linear(
            cond_seq_dim, dim, bias=False, dtype=dtype, device=device
        )  # linear for something like text sequence.
        self.init_x_linear = operations.Linear(
            patch_size * patch_size * in_channels, dim, dtype=dtype, device=device
        )  # init linear for patchified image.

        self.positional_encoding = nn.Parameter(torch.empty(1, max_seq, dim, dtype=dtype, device=device))
        self.register_tokens = nn.Parameter(torch.empty(1, 8, dim, dtype=dtype, device=device))

        self.double_layers = nn.ModuleList([])
        self.single_layers = nn.ModuleList([])


        for idx in range(n_double_layers):
            self.double_layers.append(
                MMDiTBlock(dim, n_heads, global_conddim, is_last=(idx == n_layers - 1), dtype=dtype, device=device, operations=operations)
            )

        for idx in range(n_double_layers, n_layers):
            self.single_layers.append(
                DiTBlock(dim, n_heads, global_conddim, dtype=dtype, device=device, operations=operations)
            )


        self.final_linear = operations.Linear(
            dim, patch_size * patch_size * out_channels, bias=False, dtype=dtype, device=device
        )

        self.modF = nn.Sequential(
            nn.SiLU(),
            operations.Linear(global_conddim, 2 * dim, bias=False, dtype=dtype, device=device),
        )

        self.out_channels = out_channels
        self.patch_size = patch_size
        self.n_double_layers = n_double_layers
        self.n_layers = n_layers

        self.h_max = round(max_seq**0.5)
        self.w_max = round(max_seq**0.5)

    @torch.no_grad()
    def extend_pe(self, init_dim=(16, 16), target_dim=(64, 64)):
        # extend pe
        pe_data = self.positional_encoding.data.squeeze(0)[: init_dim[0] * init_dim[1]]

        pe_as_2d = pe_data.view(init_dim[0], init_dim[1], -1).permute(2, 0, 1)

        # now we need to extend this to target_dim. for this we will use interpolation.
        # we will use torch.nn.functional.interpolate
        pe_as_2d = F.interpolate(
            pe_as_2d.unsqueeze(0), size=target_dim, mode="bilinear"
        )
        pe_new = pe_as_2d.squeeze(0).permute(1, 2, 0).flatten(0, 1)
        self.positional_encoding.data = pe_new.unsqueeze(0).contiguous()
        self.h_max, self.w_max = target_dim
        print("PE extended to", target_dim)

    def pe_selection_index_based_on_dim(self, h, w):
        h_p, w_p = h // self.patch_size, w // self.patch_size
        original_pe_indexes = torch.arange(self.positional_encoding.shape[1])
        original_pe_indexes = original_pe_indexes.view(self.h_max, self.w_max)
        starth =  self.h_max // 2 - h_p // 2
        endh =starth + h_p
        startw = self.w_max // 2 - w_p // 2
        endw = startw + w_p
        original_pe_indexes = original_pe_indexes[
            starth:endh, startw:endw
        ]
        return original_pe_indexes.flatten()

    def unpatchify(self, x, h, w):
        c = self.out_channels
        p = self.patch_size

        x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
        x = torch.einsum("nhwpqc->nchpwq", x)
        imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
        return imgs

    def patchify(self, x):
        B, C, H, W = x.size()
        x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
        x = x.view(
            B,
            C,
            (H + 1) // self.patch_size,
            self.patch_size,
            (W + 1) // self.patch_size,
            self.patch_size,
        )
        x = x.permute(0, 2, 4, 1, 3, 5).flatten(-3).flatten(1, 2)
        return x

    def apply_pos_embeds(self, x, h, w):
        h = (h + 1) // self.patch_size
        w = (w + 1) // self.patch_size
        max_dim = max(h, w)

        cur_dim = self.h_max
        pos_encoding = comfy.ops.cast_to_input(self.positional_encoding.reshape(1, cur_dim, cur_dim, -1), x)

        if max_dim > cur_dim:
            pos_encoding = F.interpolate(pos_encoding.movedim(-1, 1), (max_dim, max_dim), mode="bilinear").movedim(1, -1)
            cur_dim = max_dim

        from_h = (cur_dim - h) // 2
        from_w = (cur_dim - w) // 2
        pos_encoding = pos_encoding[:,from_h:from_h+h,from_w:from_w+w]
        return x + pos_encoding.reshape(1, -1, self.positional_encoding.shape[-1])

    def forward(self, x, timestep, context, transformer_options={}, **kwargs):
        patches_replace = transformer_options.get("patches_replace", {})
        # patchify x, add PE
        b, c, h, w = x.shape

        # pe_indexes = self.pe_selection_index_based_on_dim(h, w)
        # print(pe_indexes, pe_indexes.shape)

        x = self.init_x_linear(self.patchify(x))  # B, T_x, D
        x = self.apply_pos_embeds(x, h, w)
        # x = x + self.positional_encoding[:, : x.size(1)].to(device=x.device, dtype=x.dtype)
        # x = x + self.positional_encoding[:, pe_indexes].to(device=x.device, dtype=x.dtype)

        # process conditions for MMDiT Blocks
        c_seq = context  # B, T_c, D_c
        t = timestep

        c = self.cond_seq_linear(c_seq)  # B, T_c, D
        c = torch.cat([comfy.ops.cast_to_input(self.register_tokens, c).repeat(c.size(0), 1, 1), c], dim=1)

        global_cond = self.t_embedder(t, x.dtype)  # B, D

        blocks_replace = patches_replace.get("dit", {})
        if len(self.double_layers) > 0:
            for i, layer in enumerate(self.double_layers):
                if ("double_block", i) in blocks_replace:
                    def block_wrap(args):
                        out = {}
                        out["txt"], out["img"] = layer(args["txt"],
                                                       args["img"],
                                                       args["vec"])
                        return out
                    out = blocks_replace[("double_block", i)]({"img": x, "txt": c, "vec": global_cond}, {"original_block": block_wrap})
                    c = out["txt"]
                    x = out["img"]
                else:
                    c, x = layer(c, x, global_cond, **kwargs)

        if len(self.single_layers) > 0:
            c_len = c.size(1)
            cx = torch.cat([c, x], dim=1)
            for i, layer in enumerate(self.single_layers):
                if ("single_block", i) in blocks_replace:
                    def block_wrap(args):
                        out = {}
                        out["img"] = layer(args["img"], args["vec"])
                        return out

                    out = blocks_replace[("single_block", i)]({"img": cx, "vec": global_cond}, {"original_block": block_wrap})
                    cx = out["img"]
                else:
                    cx = layer(cx, global_cond, **kwargs)

            x = cx[:, c_len:]

        fshift, fscale = self.modF(global_cond).chunk(2, dim=1)

        x = modulate(x, fshift, fscale)
        x = self.final_linear(x)
        x = self.unpatchify(x, (h + 1) // self.patch_size, (w + 1) // self.patch_size)[:,:,:h,:w]
        return x