Spaces:
ginipick
/
Running on Zero

File size: 22,286 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
#original code from https://github.com/genmoai/models under apache 2.0 license
#adapted to ComfyUI

from typing import Callable, List, Optional, Tuple, Union
from functools import partial
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange

from comfy.ldm.modules.attention import optimized_attention

import comfy.ops
ops = comfy.ops.disable_weight_init

# import mochi_preview.dit.joint_model.context_parallel as cp
# from mochi_preview.vae.cp_conv import cp_pass_frames, gather_all_frames


def cast_tuple(t, length=1):
    return t if isinstance(t, tuple) else ((t,) * length)


class GroupNormSpatial(ops.GroupNorm):
    """
    GroupNorm applied per-frame.
    """

    def forward(self, x: torch.Tensor, *, chunk_size: int = 8):
        B, C, T, H, W = x.shape
        x = rearrange(x, "B C T H W -> (B T) C H W")
        # Run group norm in chunks.
        output = torch.empty_like(x)
        for b in range(0, B * T, chunk_size):
            output[b : b + chunk_size] = super().forward(x[b : b + chunk_size])
        return rearrange(output, "(B T) C H W -> B C T H W", B=B, T=T)

class PConv3d(ops.Conv3d):
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size: Union[int, Tuple[int, int, int]],
        stride: Union[int, Tuple[int, int, int]],
        causal: bool = True,
        context_parallel: bool = True,
        **kwargs,
    ):
        self.causal = causal
        self.context_parallel = context_parallel
        kernel_size = cast_tuple(kernel_size, 3)
        stride = cast_tuple(stride, 3)
        height_pad = (kernel_size[1] - 1) // 2
        width_pad = (kernel_size[2] - 1) // 2

        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            dilation=(1, 1, 1),
            padding=(0, height_pad, width_pad),
            **kwargs,
        )

    def forward(self, x: torch.Tensor):
        # Compute padding amounts.
        context_size = self.kernel_size[0] - 1
        if self.causal:
            pad_front = context_size
            pad_back = 0
        else:
            pad_front = context_size // 2
            pad_back = context_size - pad_front

        # Apply padding.
        assert self.padding_mode == "replicate"  # DEBUG
        mode = "constant" if self.padding_mode == "zeros" else self.padding_mode
        x = F.pad(x, (0, 0, 0, 0, pad_front, pad_back), mode=mode)
        return super().forward(x)


class Conv1x1(ops.Linear):
    """*1x1 Conv implemented with a linear layer."""

    def __init__(self, in_features: int, out_features: int, *args, **kwargs):
        super().__init__(in_features, out_features, *args, **kwargs)

    def forward(self, x: torch.Tensor):
        """Forward pass.

        Args:
            x: Input tensor. Shape: [B, C, *] or [B, *, C].

        Returns:
            x: Output tensor. Shape: [B, C', *] or [B, *, C'].
        """
        x = x.movedim(1, -1)
        x = super().forward(x)
        x = x.movedim(-1, 1)
        return x


class DepthToSpaceTime(nn.Module):
    def __init__(
        self,
        temporal_expansion: int,
        spatial_expansion: int,
    ):
        super().__init__()
        self.temporal_expansion = temporal_expansion
        self.spatial_expansion = spatial_expansion

    # When printed, this module should show the temporal and spatial expansion factors.
    def extra_repr(self):
        return f"texp={self.temporal_expansion}, sexp={self.spatial_expansion}"

    def forward(self, x: torch.Tensor):
        """Forward pass.

        Args:
            x: Input tensor. Shape: [B, C, T, H, W].

        Returns:
            x: Rearranged tensor. Shape: [B, C/(st*s*s), T*st, H*s, W*s].
        """
        x = rearrange(
            x,
            "B (C st sh sw) T H W -> B C (T st) (H sh) (W sw)",
            st=self.temporal_expansion,
            sh=self.spatial_expansion,
            sw=self.spatial_expansion,
        )

        # cp_rank, _ = cp.get_cp_rank_size()
        if self.temporal_expansion > 1: # and cp_rank == 0:
            # Drop the first self.temporal_expansion - 1 frames.
            # This is because we always want the 3x3x3 conv filter to only apply
            # to the first frame, and the first frame doesn't need to be repeated.
            assert all(x.shape)
            x = x[:, :, self.temporal_expansion - 1 :]
            assert all(x.shape)

        return x


def norm_fn(
    in_channels: int,
    affine: bool = True,
):
    return GroupNormSpatial(affine=affine, num_groups=32, num_channels=in_channels)


class ResBlock(nn.Module):
    """Residual block that preserves the spatial dimensions."""

    def __init__(
        self,
        channels: int,
        *,
        affine: bool = True,
        attn_block: Optional[nn.Module] = None,
        causal: bool = True,
        prune_bottleneck: bool = False,
        padding_mode: str,
        bias: bool = True,
    ):
        super().__init__()
        self.channels = channels

        assert causal
        self.stack = nn.Sequential(
            norm_fn(channels, affine=affine),
            nn.SiLU(inplace=True),
            PConv3d(
                in_channels=channels,
                out_channels=channels // 2 if prune_bottleneck else channels,
                kernel_size=(3, 3, 3),
                stride=(1, 1, 1),
                padding_mode=padding_mode,
                bias=bias,
                causal=causal,
            ),
            norm_fn(channels, affine=affine),
            nn.SiLU(inplace=True),
            PConv3d(
                in_channels=channels // 2 if prune_bottleneck else channels,
                out_channels=channels,
                kernel_size=(3, 3, 3),
                stride=(1, 1, 1),
                padding_mode=padding_mode,
                bias=bias,
                causal=causal,
            ),
        )

        self.attn_block = attn_block if attn_block else nn.Identity()

    def forward(self, x: torch.Tensor):
        """Forward pass.

        Args:
            x: Input tensor. Shape: [B, C, T, H, W].
        """
        residual = x
        x = self.stack(x)
        x = x + residual
        del residual

        return self.attn_block(x)


class Attention(nn.Module):
    def __init__(
        self,
        dim: int,
        head_dim: int = 32,
        qkv_bias: bool = False,
        out_bias: bool = True,
        qk_norm: bool = True,
    ) -> None:
        super().__init__()
        self.head_dim = head_dim
        self.num_heads = dim // head_dim
        self.qk_norm = qk_norm

        self.qkv = nn.Linear(dim, 3 * dim, bias=qkv_bias)
        self.out = nn.Linear(dim, dim, bias=out_bias)

    def forward(
        self,
        x: torch.Tensor,
    ) -> torch.Tensor:
        """Compute temporal self-attention.

        Args:
            x: Input tensor. Shape: [B, C, T, H, W].
            chunk_size: Chunk size for large tensors.

        Returns:
            x: Output tensor. Shape: [B, C, T, H, W].
        """
        B, _, T, H, W = x.shape

        if T == 1:
            # No attention for single frame.
            x = x.movedim(1, -1)  # [B, C, T, H, W] -> [B, T, H, W, C]
            qkv = self.qkv(x)
            _, _, x = qkv.chunk(3, dim=-1)  # Throw away queries and keys.
            x = self.out(x)
            return x.movedim(-1, 1)  # [B, T, H, W, C] -> [B, C, T, H, W]

        # 1D temporal attention.
        x = rearrange(x, "B C t h w -> (B h w) t C")
        qkv = self.qkv(x)

        # Input: qkv with shape [B, t, 3 * num_heads * head_dim]
        # Output: x with shape [B, num_heads, t, head_dim]
        q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, self.head_dim).transpose(1, 3).unbind(2)

        if self.qk_norm:
            q = F.normalize(q, p=2, dim=-1)
            k = F.normalize(k, p=2, dim=-1)

        x = optimized_attention(q, k, v, self.num_heads, skip_reshape=True)

        assert x.size(0) == q.size(0)

        x = self.out(x)
        x = rearrange(x, "(B h w) t C -> B C t h w", B=B, h=H, w=W)
        return x


class AttentionBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        **attn_kwargs,
    ) -> None:
        super().__init__()
        self.norm = norm_fn(dim)
        self.attn = Attention(dim, **attn_kwargs)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x + self.attn(self.norm(x))


class CausalUpsampleBlock(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        num_res_blocks: int,
        *,
        temporal_expansion: int = 2,
        spatial_expansion: int = 2,
        **block_kwargs,
    ):
        super().__init__()

        blocks = []
        for _ in range(num_res_blocks):
            blocks.append(block_fn(in_channels, **block_kwargs))
        self.blocks = nn.Sequential(*blocks)

        self.temporal_expansion = temporal_expansion
        self.spatial_expansion = spatial_expansion

        # Change channels in the final convolution layer.
        self.proj = Conv1x1(
            in_channels,
            out_channels * temporal_expansion * (spatial_expansion**2),
        )

        self.d2st = DepthToSpaceTime(
            temporal_expansion=temporal_expansion, spatial_expansion=spatial_expansion
        )

    def forward(self, x):
        x = self.blocks(x)
        x = self.proj(x)
        x = self.d2st(x)
        return x


def block_fn(channels, *, affine: bool = True, has_attention: bool = False, **block_kwargs):
    attn_block = AttentionBlock(channels) if has_attention else None
    return ResBlock(channels, affine=affine, attn_block=attn_block, **block_kwargs)


class DownsampleBlock(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        num_res_blocks,
        *,
        temporal_reduction=2,
        spatial_reduction=2,
        **block_kwargs,
    ):
        """
        Downsample block for the VAE encoder.

        Args:
            in_channels: Number of input channels.
            out_channels: Number of output channels.
            num_res_blocks: Number of residual blocks.
            temporal_reduction: Temporal reduction factor.
            spatial_reduction: Spatial reduction factor.
        """
        super().__init__()
        layers = []

        # Change the channel count in the strided convolution.
        # This lets the ResBlock have uniform channel count,
        # as in ConvNeXt.
        assert in_channels != out_channels
        layers.append(
            PConv3d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=(temporal_reduction, spatial_reduction, spatial_reduction),
                stride=(temporal_reduction, spatial_reduction, spatial_reduction),
                # First layer in each block always uses replicate padding
                padding_mode="replicate",
                bias=block_kwargs["bias"],
            )
        )

        for _ in range(num_res_blocks):
            layers.append(block_fn(out_channels, **block_kwargs))

        self.layers = nn.Sequential(*layers)

    def forward(self, x):
        return self.layers(x)


def add_fourier_features(inputs: torch.Tensor, start=6, stop=8, step=1):
    num_freqs = (stop - start) // step
    assert inputs.ndim == 5
    C = inputs.size(1)

    # Create Base 2 Fourier features.
    freqs = torch.arange(start, stop, step, dtype=inputs.dtype, device=inputs.device)
    assert num_freqs == len(freqs)
    w = torch.pow(2.0, freqs) * (2 * torch.pi)  # [num_freqs]
    C = inputs.shape[1]
    w = w.repeat(C)[None, :, None, None, None]  # [1, C * num_freqs, 1, 1, 1]

    # Interleaved repeat of input channels to match w.
    h = inputs.repeat_interleave(num_freqs, dim=1)  # [B, C * num_freqs, T, H, W]
    # Scale channels by frequency.
    h = w * h

    return torch.cat(
        [
            inputs,
            torch.sin(h),
            torch.cos(h),
        ],
        dim=1,
    )


class FourierFeatures(nn.Module):
    def __init__(self, start: int = 6, stop: int = 8, step: int = 1):
        super().__init__()
        self.start = start
        self.stop = stop
        self.step = step

    def forward(self, inputs):
        """Add Fourier features to inputs.

        Args:
            inputs: Input tensor. Shape: [B, C, T, H, W]

        Returns:
            h: Output tensor. Shape: [B, (1 + 2 * num_freqs) * C, T, H, W]
        """
        return add_fourier_features(inputs, self.start, self.stop, self.step)


class Decoder(nn.Module):
    def __init__(
        self,
        *,
        out_channels: int = 3,
        latent_dim: int,
        base_channels: int,
        channel_multipliers: List[int],
        num_res_blocks: List[int],
        temporal_expansions: Optional[List[int]] = None,
        spatial_expansions: Optional[List[int]] = None,
        has_attention: List[bool],
        output_norm: bool = True,
        nonlinearity: str = "silu",
        output_nonlinearity: str = "silu",
        causal: bool = True,
        **block_kwargs,
    ):
        super().__init__()
        self.input_channels = latent_dim
        self.base_channels = base_channels
        self.channel_multipliers = channel_multipliers
        self.num_res_blocks = num_res_blocks
        self.output_nonlinearity = output_nonlinearity
        assert nonlinearity == "silu"
        assert causal

        ch = [mult * base_channels for mult in channel_multipliers]
        self.num_up_blocks = len(ch) - 1
        assert len(num_res_blocks) == self.num_up_blocks + 2

        blocks = []

        first_block = [
            ops.Conv3d(latent_dim, ch[-1], kernel_size=(1, 1, 1))
        ]  # Input layer.
        # First set of blocks preserve channel count.
        for _ in range(num_res_blocks[-1]):
            first_block.append(
                block_fn(
                    ch[-1],
                    has_attention=has_attention[-1],
                    causal=causal,
                    **block_kwargs,
                )
            )
        blocks.append(nn.Sequential(*first_block))

        assert len(temporal_expansions) == len(spatial_expansions) == self.num_up_blocks
        assert len(num_res_blocks) == len(has_attention) == self.num_up_blocks + 2

        upsample_block_fn = CausalUpsampleBlock

        for i in range(self.num_up_blocks):
            block = upsample_block_fn(
                ch[-i - 1],
                ch[-i - 2],
                num_res_blocks=num_res_blocks[-i - 2],
                has_attention=has_attention[-i - 2],
                temporal_expansion=temporal_expansions[-i - 1],
                spatial_expansion=spatial_expansions[-i - 1],
                causal=causal,
                **block_kwargs,
            )
            blocks.append(block)

        assert not output_norm

        # Last block. Preserve channel count.
        last_block = []
        for _ in range(num_res_blocks[0]):
            last_block.append(
                block_fn(
                    ch[0], has_attention=has_attention[0], causal=causal, **block_kwargs
                )
            )
        blocks.append(nn.Sequential(*last_block))

        self.blocks = nn.ModuleList(blocks)
        self.output_proj = Conv1x1(ch[0], out_channels)

    def forward(self, x):
        """Forward pass.

        Args:
            x: Latent tensor. Shape: [B, input_channels, t, h, w]. Scaled [-1, 1].

        Returns:
            x: Reconstructed video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1].
               T + 1 = (t - 1) * 4.
               H = h * 16, W = w * 16.
        """
        for block in self.blocks:
            x = block(x)

        if self.output_nonlinearity == "silu":
            x = F.silu(x, inplace=not self.training)
        else:
            assert (
                not self.output_nonlinearity
            )  # StyleGAN3 omits the to-RGB nonlinearity.

        return self.output_proj(x).contiguous()

class LatentDistribution:
    def __init__(self, mean: torch.Tensor, logvar: torch.Tensor):
        """Initialize latent distribution.

        Args:
            mean: Mean of the distribution. Shape: [B, C, T, H, W].
            logvar: Logarithm of variance of the distribution. Shape: [B, C, T, H, W].
        """
        assert mean.shape == logvar.shape
        self.mean = mean
        self.logvar = logvar

    def sample(self, temperature=1.0, generator: torch.Generator = None, noise=None):
        if temperature == 0.0:
            return self.mean

        if noise is None:
            noise = torch.randn(self.mean.shape, device=self.mean.device, dtype=self.mean.dtype, generator=generator)
        else:
            assert noise.device == self.mean.device
            noise = noise.to(self.mean.dtype)

        if temperature != 1.0:
            raise NotImplementedError(f"Temperature {temperature} is not supported.")

        # Just Gaussian sample with no scaling of variance.
        return noise * torch.exp(self.logvar * 0.5) + self.mean

    def mode(self):
        return self.mean

class Encoder(nn.Module):
    def __init__(
        self,
        *,
        in_channels: int,
        base_channels: int,
        channel_multipliers: List[int],
        num_res_blocks: List[int],
        latent_dim: int,
        temporal_reductions: List[int],
        spatial_reductions: List[int],
        prune_bottlenecks: List[bool],
        has_attentions: List[bool],
        affine: bool = True,
        bias: bool = True,
        input_is_conv_1x1: bool = False,
        padding_mode: str,
    ):
        super().__init__()
        self.temporal_reductions = temporal_reductions
        self.spatial_reductions = spatial_reductions
        self.base_channels = base_channels
        self.channel_multipliers = channel_multipliers
        self.num_res_blocks = num_res_blocks
        self.latent_dim = latent_dim

        self.fourier_features = FourierFeatures()
        ch = [mult * base_channels for mult in channel_multipliers]
        num_down_blocks = len(ch) - 1
        assert len(num_res_blocks) == num_down_blocks + 2

        layers = (
            [ops.Conv3d(in_channels, ch[0], kernel_size=(1, 1, 1), bias=True)]
            if not input_is_conv_1x1
            else [Conv1x1(in_channels, ch[0])]
        )

        assert len(prune_bottlenecks) == num_down_blocks + 2
        assert len(has_attentions) == num_down_blocks + 2
        block = partial(block_fn, padding_mode=padding_mode, affine=affine, bias=bias)

        for _ in range(num_res_blocks[0]):
            layers.append(block(ch[0], has_attention=has_attentions[0], prune_bottleneck=prune_bottlenecks[0]))
        prune_bottlenecks = prune_bottlenecks[1:]
        has_attentions = has_attentions[1:]

        assert len(temporal_reductions) == len(spatial_reductions) == len(ch) - 1
        for i in range(num_down_blocks):
            layer = DownsampleBlock(
                ch[i],
                ch[i + 1],
                num_res_blocks=num_res_blocks[i + 1],
                temporal_reduction=temporal_reductions[i],
                spatial_reduction=spatial_reductions[i],
                prune_bottleneck=prune_bottlenecks[i],
                has_attention=has_attentions[i],
                affine=affine,
                bias=bias,
                padding_mode=padding_mode,
            )

            layers.append(layer)

        # Additional blocks.
        for _ in range(num_res_blocks[-1]):
            layers.append(block(ch[-1], has_attention=has_attentions[-1], prune_bottleneck=prune_bottlenecks[-1]))

        self.layers = nn.Sequential(*layers)

        # Output layers.
        self.output_norm = norm_fn(ch[-1])
        self.output_proj = Conv1x1(ch[-1], 2 * latent_dim, bias=False)

    @property
    def temporal_downsample(self):
        return math.prod(self.temporal_reductions)

    @property
    def spatial_downsample(self):
        return math.prod(self.spatial_reductions)

    def forward(self, x) -> LatentDistribution:
        """Forward pass.

        Args:
            x: Input video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1]

        Returns:
            means: Latent tensor. Shape: [B, latent_dim, t, h, w]. Scaled [-1, 1].
                   h = H // 8, w = W // 8, t - 1 = (T - 1) // 6
            logvar: Shape: [B, latent_dim, t, h, w].
        """
        assert x.ndim == 5, f"Expected 5D input, got {x.shape}"
        x = self.fourier_features(x)

        x = self.layers(x)

        x = self.output_norm(x)
        x = F.silu(x, inplace=True)
        x = self.output_proj(x)

        means, logvar = torch.chunk(x, 2, dim=1)

        assert means.ndim == 5
        assert logvar.shape == means.shape
        assert means.size(1) == self.latent_dim

        return LatentDistribution(means, logvar)


class VideoVAE(nn.Module):
    def __init__(self):
        super().__init__()
        self.encoder = Encoder(
            in_channels=15,
            base_channels=64,
            channel_multipliers=[1, 2, 4, 6],
            num_res_blocks=[3, 3, 4, 6, 3],
            latent_dim=12,
            temporal_reductions=[1, 2, 3],
            spatial_reductions=[2, 2, 2],
            prune_bottlenecks=[False, False, False, False, False],
            has_attentions=[False, True, True, True, True],
            affine=True,
            bias=True,
            input_is_conv_1x1=True,
            padding_mode="replicate"
        )
        self.decoder = Decoder(
            out_channels=3,
            base_channels=128,
            channel_multipliers=[1, 2, 4, 6],
            temporal_expansions=[1, 2, 3],
            spatial_expansions=[2, 2, 2],
            num_res_blocks=[3, 3, 4, 6, 3],
            latent_dim=12,
            has_attention=[False, False, False, False, False],
            padding_mode="replicate",
            output_norm=False,
            nonlinearity="silu",
            output_nonlinearity="silu",
            causal=True,
        )

    def encode(self, x):
        return self.encoder(x).mode()

    def decode(self, x):
        return self.decoder(x)