Spaces:
ginipick
/
Running on Zero

File size: 17,323 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
from typing import Any

import torch
import torch.nn as nn
import torch.nn.functional as F

import comfy.ops
from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed, RMSNorm
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding
from torch.utils import checkpoint

from .attn_layers import Attention, CrossAttention
from .poolers import AttentionPool
from .posemb_layers import get_2d_rotary_pos_embed, get_fill_resize_and_crop

def calc_rope(x, patch_size, head_size):
    th = (x.shape[2] + (patch_size // 2)) // patch_size
    tw = (x.shape[3] + (patch_size // 2)) // patch_size
    base_size = 512 // 8 // patch_size
    start, stop = get_fill_resize_and_crop((th, tw), base_size)
    sub_args = [start, stop, (th, tw)]
    # head_size = HUNYUAN_DIT_CONFIG['DiT-g/2']['hidden_size'] // HUNYUAN_DIT_CONFIG['DiT-g/2']['num_heads']
    rope = get_2d_rotary_pos_embed(head_size, *sub_args)
    rope = (rope[0].to(x), rope[1].to(x))
    return rope


def modulate(x, shift, scale):
    return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)


class HunYuanDiTBlock(nn.Module):
    """
    A HunYuanDiT block with `add` conditioning.
    """
    def __init__(self,
                 hidden_size,
                 c_emb_size,
                 num_heads,
                 mlp_ratio=4.0,
                 text_states_dim=1024,
                 qk_norm=False,
                 norm_type="layer",
                 skip=False,
                 attn_precision=None,
                 dtype=None,
                 device=None,
                 operations=None,
                 ):
        super().__init__()
        use_ele_affine = True

        if norm_type == "layer":
            norm_layer = operations.LayerNorm
        elif norm_type == "rms":
            norm_layer = RMSNorm
        else:
            raise ValueError(f"Unknown norm_type: {norm_type}")

        # ========================= Self-Attention =========================
        self.norm1 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6, dtype=dtype, device=device)
        self.attn1 = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, qk_norm=qk_norm, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations)

        # ========================= FFN =========================
        self.norm2 = norm_layer(hidden_size, elementwise_affine=use_ele_affine, eps=1e-6, dtype=dtype, device=device)
        mlp_hidden_dim = int(hidden_size * mlp_ratio)
        approx_gelu = lambda: nn.GELU(approximate="tanh")
        self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0, dtype=dtype, device=device, operations=operations)

        # ========================= Add =========================
        # Simply use add like SDXL.
        self.default_modulation = nn.Sequential(
            nn.SiLU(),
            operations.Linear(c_emb_size, hidden_size, bias=True, dtype=dtype, device=device)
        )

        # ========================= Cross-Attention =========================
        self.attn2 = CrossAttention(hidden_size, text_states_dim, num_heads=num_heads, qkv_bias=True,
                                        qk_norm=qk_norm, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations)
        self.norm3 = norm_layer(hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device)

        # ========================= Skip Connection =========================
        if skip:
            self.skip_norm = norm_layer(2 * hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device)
            self.skip_linear = operations.Linear(2 * hidden_size, hidden_size, dtype=dtype, device=device)
        else:
            self.skip_linear = None

        self.gradient_checkpointing = False

    def _forward(self, x, c=None, text_states=None, freq_cis_img=None, skip=None):
        # Long Skip Connection
        if self.skip_linear is not None:
            cat = torch.cat([x, skip], dim=-1)
            if cat.dtype != x.dtype:
                cat = cat.to(x.dtype)
            cat = self.skip_norm(cat)
            x = self.skip_linear(cat)

        # Self-Attention
        shift_msa = self.default_modulation(c).unsqueeze(dim=1)
        attn_inputs = (
            self.norm1(x) + shift_msa, freq_cis_img,
        )
        x = x + self.attn1(*attn_inputs)[0]

        # Cross-Attention
        cross_inputs = (
            self.norm3(x), text_states, freq_cis_img
        )
        x = x + self.attn2(*cross_inputs)[0]

        # FFN Layer
        mlp_inputs = self.norm2(x)
        x = x + self.mlp(mlp_inputs)

        return x

    def forward(self, x, c=None, text_states=None, freq_cis_img=None, skip=None):
        if self.gradient_checkpointing and self.training:
            return checkpoint.checkpoint(self._forward, x, c, text_states, freq_cis_img, skip)
        return self._forward(x, c, text_states, freq_cis_img, skip)


class FinalLayer(nn.Module):
    """
    The final layer of HunYuanDiT.
    """
    def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels, dtype=None, device=None, operations=None):
        super().__init__()
        self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
        self.linear = operations.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            operations.Linear(c_emb_size, 2 * final_hidden_size, bias=True, dtype=dtype, device=device)
        )

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x


class HunYuanDiT(nn.Module):
    """
    HunYuanDiT: Diffusion model with a Transformer backbone.

    Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.

    Inherit PeftAdapterMixin to be compatible with the PEFT training pipeline.

    Parameters
    ----------
    args: argparse.Namespace
        The arguments parsed by argparse.
    input_size: tuple
        The size of the input image.
    patch_size: int
        The size of the patch.
    in_channels: int
        The number of input channels.
    hidden_size: int
        The hidden size of the transformer backbone.
    depth: int
        The number of transformer blocks.
    num_heads: int
        The number of attention heads.
    mlp_ratio: float
        The ratio of the hidden size of the MLP in the transformer block.
    log_fn: callable
        The logging function.
    """
    #@register_to_config
    def __init__(self,
                 input_size: tuple = 32,
                 patch_size: int = 2,
                 in_channels: int = 4,
                 hidden_size: int = 1152,
                 depth: int = 28,
                 num_heads: int = 16,
                 mlp_ratio: float = 4.0,
                 text_states_dim = 1024,
                 text_states_dim_t5 = 2048,
                 text_len = 77,
                 text_len_t5 = 256,
                 qk_norm = True,# See http://arxiv.org/abs/2302.05442 for details.
                 size_cond = False,
                 use_style_cond = False,
                 learn_sigma = True,
                 norm = "layer",
                 log_fn: callable = print,
                 attn_precision=None,
                 dtype=None,
                 device=None,
                 operations=None,
                 **kwargs,
    ):
        super().__init__()
        self.log_fn = log_fn
        self.depth = depth
        self.learn_sigma = learn_sigma
        self.in_channels = in_channels
        self.out_channels = in_channels * 2 if learn_sigma else in_channels
        self.patch_size = patch_size
        self.num_heads = num_heads
        self.hidden_size = hidden_size
        self.text_states_dim = text_states_dim
        self.text_states_dim_t5 = text_states_dim_t5
        self.text_len = text_len
        self.text_len_t5 = text_len_t5
        self.size_cond = size_cond
        self.use_style_cond = use_style_cond
        self.norm = norm
        self.dtype = dtype
        #import pdb
        #pdb.set_trace()

        self.mlp_t5 = nn.Sequential(
            operations.Linear(self.text_states_dim_t5, self.text_states_dim_t5 * 4, bias=True, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Linear(self.text_states_dim_t5 * 4, self.text_states_dim, bias=True, dtype=dtype, device=device),
        )
        # learnable replace
        self.text_embedding_padding = nn.Parameter(
            torch.empty(self.text_len + self.text_len_t5, self.text_states_dim, dtype=dtype, device=device))

        # Attention pooling
        pooler_out_dim = 1024
        self.pooler = AttentionPool(self.text_len_t5, self.text_states_dim_t5, num_heads=8, output_dim=pooler_out_dim, dtype=dtype, device=device, operations=operations)

        # Dimension of the extra input vectors
        self.extra_in_dim = pooler_out_dim

        if self.size_cond:
            # Image size and crop size conditions
            self.extra_in_dim += 6 * 256

        if self.use_style_cond:
            # Here we use a default learned embedder layer for future extension.
            self.style_embedder = operations.Embedding(1, hidden_size, dtype=dtype, device=device)
            self.extra_in_dim += hidden_size

        # Text embedding for `add`
        self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, dtype=dtype, device=device, operations=operations)
        self.t_embedder = TimestepEmbedder(hidden_size, dtype=dtype, device=device, operations=operations)
        self.extra_embedder = nn.Sequential(
            operations.Linear(self.extra_in_dim, hidden_size * 4, dtype=dtype, device=device),
            nn.SiLU(),
            operations.Linear(hidden_size * 4, hidden_size, bias=True, dtype=dtype, device=device),
        )

        # Image embedding
        num_patches = self.x_embedder.num_patches

        # HUnYuanDiT Blocks
        self.blocks = nn.ModuleList([
            HunYuanDiTBlock(hidden_size=hidden_size,
                            c_emb_size=hidden_size,
                            num_heads=num_heads,
                            mlp_ratio=mlp_ratio,
                            text_states_dim=self.text_states_dim,
                            qk_norm=qk_norm,
                            norm_type=self.norm,
                            skip=layer > depth // 2,
                            attn_precision=attn_precision,
                            dtype=dtype,
                            device=device,
                            operations=operations,
                            )
            for layer in range(depth)
        ])

        self.final_layer = FinalLayer(hidden_size, hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations)
        self.unpatchify_channels = self.out_channels



    def forward(self,
                x,
                t,
                context,#encoder_hidden_states=None,
                text_embedding_mask=None,
                encoder_hidden_states_t5=None,
                text_embedding_mask_t5=None,
                image_meta_size=None,
                style=None,
                return_dict=False,
                control=None,
                transformer_options={},
                ):
        """
        Forward pass of the encoder.

        Parameters
        ----------
        x: torch.Tensor
            (B, D, H, W)
        t: torch.Tensor
            (B)
        encoder_hidden_states: torch.Tensor
            CLIP text embedding, (B, L_clip, D)
        text_embedding_mask: torch.Tensor
            CLIP text embedding mask, (B, L_clip)
        encoder_hidden_states_t5: torch.Tensor
            T5 text embedding, (B, L_t5, D)
        text_embedding_mask_t5: torch.Tensor
            T5 text embedding mask, (B, L_t5)
        image_meta_size: torch.Tensor
            (B, 6)
        style: torch.Tensor
            (B)
        cos_cis_img: torch.Tensor
        sin_cis_img: torch.Tensor
        return_dict: bool
            Whether to return a dictionary.
        """
        patches_replace = transformer_options.get("patches_replace", {})
        encoder_hidden_states = context
        text_states = encoder_hidden_states                     # 2,77,1024
        text_states_t5 = encoder_hidden_states_t5               # 2,256,2048
        text_states_mask = text_embedding_mask.bool()           # 2,77
        text_states_t5_mask = text_embedding_mask_t5.bool()     # 2,256
        b_t5, l_t5, c_t5 = text_states_t5.shape
        text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)).view(b_t5, l_t5, -1)

        padding = comfy.ops.cast_to_input(self.text_embedding_padding, text_states)

        text_states[:,-self.text_len:] = torch.where(text_states_mask[:,-self.text_len:].unsqueeze(2), text_states[:,-self.text_len:], padding[:self.text_len])
        text_states_t5[:,-self.text_len_t5:] = torch.where(text_states_t5_mask[:,-self.text_len_t5:].unsqueeze(2), text_states_t5[:,-self.text_len_t5:], padding[self.text_len:])

        text_states = torch.cat([text_states, text_states_t5], dim=1)  # 2,205,1024
        # clip_t5_mask = torch.cat([text_states_mask, text_states_t5_mask], dim=-1)

        _, _, oh, ow = x.shape
        th, tw = (oh + (self.patch_size // 2)) // self.patch_size, (ow + (self.patch_size // 2)) // self.patch_size


        # Get image RoPE embedding according to `reso`lution.
        freqs_cis_img = calc_rope(x, self.patch_size, self.hidden_size // self.num_heads) #(cos_cis_img, sin_cis_img)

        # ========================= Build time and image embedding =========================
        t = self.t_embedder(t, dtype=x.dtype)
        x = self.x_embedder(x)

        # ========================= Concatenate all extra vectors =========================
        # Build text tokens with pooling
        extra_vec = self.pooler(encoder_hidden_states_t5)

        # Build image meta size tokens if applicable
        if self.size_cond:
            image_meta_size = timestep_embedding(image_meta_size.view(-1), 256).to(x.dtype)   # [B * 6, 256]
            image_meta_size = image_meta_size.view(-1, 6 * 256)
            extra_vec = torch.cat([extra_vec, image_meta_size], dim=1)  # [B, D + 6 * 256]

        # Build style tokens
        if self.use_style_cond:
            if style is None:
                style = torch.zeros((extra_vec.shape[0],), device=x.device, dtype=torch.int)
            style_embedding = self.style_embedder(style, out_dtype=x.dtype)
            extra_vec = torch.cat([extra_vec, style_embedding], dim=1)

        # Concatenate all extra vectors
        c = t + self.extra_embedder(extra_vec)  # [B, D]

        blocks_replace = patches_replace.get("dit", {})

        controls = None
        if control:
            controls = control.get("output", None)
        # ========================= Forward pass through HunYuanDiT blocks =========================
        skips = []
        for layer, block in enumerate(self.blocks):
            if layer > self.depth // 2:
                if controls is not None:
                    skip = skips.pop() + controls.pop().to(dtype=x.dtype)
                else:
                    skip = skips.pop()
            else:
                skip = None

            if ("double_block", layer) in blocks_replace:
                def block_wrap(args):
                    out = {}
                    out["img"] = block(args["img"], args["vec"], args["txt"], args["pe"], args["skip"])
                    return out

                out = blocks_replace[("double_block", layer)]({"img": x, "txt": text_states, "vec": c, "pe": freqs_cis_img, "skip": skip}, {"original_block": block_wrap})
                x = out["img"]
            else:
                x = block(x, c, text_states, freqs_cis_img, skip)   # (N, L, D)


            if layer < (self.depth // 2 - 1):
                skips.append(x)
        if controls is not None and len(controls) != 0:
            raise ValueError("The number of controls is not equal to the number of skip connections.")

        # ========================= Final layer =========================
        x = self.final_layer(x, c)                              # (N, L, patch_size ** 2 * out_channels)
        x = self.unpatchify(x, th, tw)                          # (N, out_channels, H, W)

        if return_dict:
            return {'x': x}
        if self.learn_sigma:
            return x[:,:self.out_channels // 2,:oh,:ow]
        return x[:,:,:oh,:ow]

    def unpatchify(self, x, h, w):
        """
        x: (N, T, patch_size**2 * C)
        imgs: (N, H, W, C)
        """
        c = self.unpatchify_channels
        p = self.x_embedder.patch_size[0]
        # h = w = int(x.shape[1] ** 0.5)
        assert h * w == x.shape[1]

        x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
        x = torch.einsum('nhwpqc->nchpwq', x)
        imgs = x.reshape(shape=(x.shape[0], c, h * p, w * p))
        return imgs