Spaces:
ginipick
/
Running on Zero

File size: 3,891 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#---------------------------------------------------------------------------------------------------------------------#
# Comfyroll Studio custom nodes by RockOfFire and Akatsuzi    https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes                             
# for ComfyUI                                                 https://github.com/comfyanonymous/ComfyUI                                               
#---------------------------------------------------------------------------------------------------------------------#

#---------------------------------------------------------------------------------------------------------------------#
# UPSCALE FUNCTIONS
#---------------------------------------------------------------------------------------------------------------------#
# These functions are based on WAS nodes Image Resize and the Comfy Extras upscale with model nodes

import torch
#import os
from comfy_extras.chainner_models import model_loading
from comfy import model_management
import numpy as np
import comfy.utils
import folder_paths
from PIL import Image

# PIL to Tensor
def pil2tensor(image):
    return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)

# Tensor to PIL
def tensor2pil(image):
    return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))

def load_model(model_name):
    model_path = folder_paths.get_full_path("upscale_models", model_name)
    sd = comfy.utils.load_torch_file(model_path, safe_load=True)
    if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd:
        sd = comfy.utils.state_dict_prefix_replace(sd, {"module.":""})
    out = model_loading.load_state_dict(sd).eval()
    return out
    
def upscale_with_model(upscale_model, image):
    device = model_management.get_torch_device()
    upscale_model.to(device)
    in_img = image.movedim(-1,-3).to(device)
    free_memory = model_management.get_free_memory(device)

    tile = 512
    overlap = 32

    oom = True
    while oom:
        try:
            steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap)
            pbar = comfy.utils.ProgressBar(steps)
            s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar)
            oom = False
        except model_management.OOM_EXCEPTION as e:
            tile //= 2
            if tile < 128:
                raise e

    upscale_model.cpu()
    s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0)
    return s        

def apply_resize_image(image: Image.Image, original_width, original_height, rounding_modulus, mode='scale', supersample='true', factor: int = 2, width: int = 1024, height: int = 1024, resample='bicubic'): 

    # Calculate the new width and height based on the given mode and parameters
    if mode == 'rescale':
        new_width, new_height = int(original_width * factor), int(original_height * factor)               
    else:
        m = rounding_modulus
        original_ratio = original_height / original_width
        height = int(width * original_ratio)
        
        new_width = width if width % m == 0 else width + (m - width % m)
        new_height = height if height % m == 0 else height + (m - height % m)

    # Define a dictionary of resampling filters
    resample_filters = {'nearest': 0, 'bilinear': 2, 'bicubic': 3, 'lanczos': 1}
    
    # Apply supersample
    if supersample == 'true':
        image = image.resize((new_width * 8, new_height * 8), resample=Image.Resampling(resample_filters[resample]))

    # Resize the image using the given resampling filter
    resized_image = image.resize((new_width, new_height), resample=Image.Resampling(resample_filters[resample]))
    
    return resized_image