Spaces:
ginipick
/
Running on Zero

File size: 12,175 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#---------------------------------------------------------------------------------------------------------------------#
# CR Animation Nodes by RockOfFire and Akatsuzi   https://github.com/Suzie1/CR-Animation-Nodes
# for ComfyUI                                     https://github.com/comfyanonymous/ComfyUI
#---------------------------------------------------------------------------------------------------------------------#

from PIL import Image, ImageSequence
import comfy.sd
import re
import torch
import numpy as np
import os
import sys
import folder_paths
import math
import json
import csv
from typing import List
from PIL.PngImagePlugin import PngInfo
from nodes import SaveImage
import glob
from ..categories import icons

#MAX_RESOLUTION=8192
ALLOWED_EXT = ('.jpeg', '.jpg', '.png', '.tiff', '.gif', '.bmp', '.webp')

def resolve_pattern(pattern):
    folder_path, file_pattern = os.path.split(pattern)
    frame_pattern = re.sub(r"#+", "*", file_pattern)
    matching_files = glob.glob(os.path.join(folder_path, frame_pattern))
    #print(f"[Debug] Found {len(matching_files)} matching files for frame pattern {frame_pattern}")
    return matching_files

def get_files(image_path, sort_by="Index", pattern=None):
    if pattern is not None:
        matching_files = resolve_pattern(os.path.join(image_path, pattern))
    else:
        matching_files = os.listdir(image_path)

    if sort_by == "Index":
        sorted_files = sorted(matching_files, key=lambda s: sum(((s, int(n)) for s, n in re.findall(r'(\D+)(\d+)', 'a%s0' % s)), ()))
    elif sort_by == "Alphabetic":
        sorted_files = sorted(matching_files, key=lambda s: (re.split(r'(\d+)', s), s))
    else:
        raise ValueError("Invalid sort_by value. Use 'Index' or 'Alphabetic'.")

    return sorted_files
    
#---------------------------------------------------------------------------------------------------------------------#
# NODES
#---------------------------------------------------------------------------------------------------------------------#
class CR_LoadAnimationFrames:
    #input_dir = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))), 'input')
    input_dir = folder_paths.input_directory
    #print(f"CR_LoadAnimationFrames: input directory {input_dir}")
    @classmethod
    def INPUT_TYPES(s):
        #if not os.path.exists(s.input_dir):
            #os.makedirs(s.input_dir)
        image_folder = [name for name in os.listdir(s.input_dir) if os.path.isdir(os.path.join(s.input_dir,name)) and len(os.listdir(os.path.join(s.input_dir,name))) != 0]
        return {"required":
                    {"image_sequence_folder": (sorted(image_folder), ),
                     "start_index": ("INT", {"default": 1, "min": 1, "max": 10000}),
                     "max_frames": ("INT", {"default": 1, "min": 1, "max": 10000})
                     }
                }

    RETURN_TYPES = ("IMAGE", "STRING", )
    RETURN_NAMES = ("IMAGE", "show_help", )
    FUNCTION = "load_image_sequence"
    CATEGORY = icons.get("Comfyroll/Animation/IO")

    def load_image_sequence(self, image_sequence_folder, start_index, max_frames):
        image_path = os.path.join(self.input_dir, image_sequence_folder)
        file_list = sorted(os.listdir(image_path), key=lambda s: sum(((s, int(n)) for s, n in re.findall(r'(\D+)(\d+)', 'a%s0' % s)), ()))
        sample_frames = []
        sample_frames_mask = []
        sample_index = list(range(start_index-1, len(file_list), 1))[:max_frames]
        for num in sample_index:
            i = Image.open(os.path.join(image_path, file_list[num]))
            image = i.convert("RGB")
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]
            image = image.squeeze()
            sample_frames.append(image)
        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/IO-Nodes#cr-load-animation-frames"                        
        return (torch.stack(sample_frames), show_help, )
 
#---------------------------------------------------------------------------------------------------------------------#
class CR_LoadFlowFrames:
# based on Load Image Sequence in vid2vid and mtb
    @classmethod
    def INPUT_TYPES(s):
    
        sort_methods = ["Index", "Alphabetic"]
        #sort_methods = ["Date modified", "Alphabetic", "Index"]
        input_dir = folder_paths.input_directory

        input_folders = [name for name in os.listdir(input_dir) if os.path.isdir(os.path.join(input_dir,name)) and len(os.listdir(os.path.join(input_dir,name))) != 0]

        return {"required":
                    {"input_folder": (sorted(input_folders), ),
                     "sort_by": (sort_methods, ),
                     "current_frame": ("INT", {"default": 0, "min": 0, "max": 10000, "forceInput": True}),
                     "skip_start_frames": ("INT", {"default": 0, "min": 0, "max": 10000}),
                     },
                "optional":
                    {"input_path": ("STRING", {"default": '', "multiline": False}),
                     "file_pattern": ("STRING", {"default": '*.png', "multiline": False}),
                    } 
                }

    CATEGORY = icons.get("Comfyroll/Animation/IO")

    RETURN_TYPES = ("IMAGE", "IMAGE", "INT", "STRING", )
    RETURN_NAMES = ("current_image", "previous_image", "current_frame", "show_help", )
    FUNCTION = "load_images"

    def load_images(self, file_pattern, skip_start_frames, input_folder, sort_by, current_frame, input_path=''):
        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/IO-Nodes#cr-load-flow-frames"

        input_dir = folder_paths.input_directory
        
        current_frame = current_frame + skip_start_frames
        print(f"[Info] CR Load Flow Frames: current_frame {current_frame}")
            
        if input_path != '':
            if not os.path.exists(input_path):
                print(f"[Warning] CR Load Flow Frames: The input_path `{input_path}` does not exist")
                return ("", )
            image_path = os.path.join('', input_path)
        else:
            image_path = os.path.join(input_dir, input_folder)

        print(f"[Info] CR Load Flow Frames: ComfyUI Input directory is `{image_path}`")
        
        file_list = get_files(image_path, sort_by, file_pattern) 
         
        if os.path.exists(image_path + '.DS_Store'):
            file_list.remove('.DS_Store') # For Mac users
            
        if len(file_list) == 0:
            print(f"[Warning] CR Load Flow Frames: No matching files found for loading")
            return ()
         
        remaining_files = len(file_list) - current_frame   
        print(f"[Info] CR Load Flow Frames: {remaining_files} input files remaining for processing")

        img = Image.open(os.path.join(image_path, file_list[current_frame]))
        cur_image = img.convert("RGB")
        cur_image = np.array(cur_image).astype(np.float32) / 255.0
        cur_image = torch.from_numpy(cur_image)[None,]
        print(f"[Debug] CR Load Flow Frames: Current image {file_list[current_frame]}")        

        # Load first frame as previous frame if no frames skipped
        if current_frame == 0 and skip_start_frames == 0:
            img = Image.open(os.path.join(image_path, file_list[current_frame]))
            pre_image = img.convert("RGB")
            pre_image = np.array(pre_image).astype(np.float32) / 255.0
            pre_image = torch.from_numpy(pre_image)[None,] 
            print(f"[Debug] CR Load Flow Frames: Previous image {file_list[current_frame]}")               
        else:
            img = Image.open(os.path.join(image_path, file_list[current_frame - 1]))
            pre_image = img.convert("RGB")
            pre_image = np.array(pre_image).astype(np.float32) / 255.0
            pre_image = torch.from_numpy(pre_image)[None,] 
            print(f"[Debug] CR Load Flow Frames: Previous image {file_list[current_frame - 1]}")            

        return (cur_image, pre_image, current_frame, show_help, )

#---------------------------------------------------------------------------------------------------------------------#
class CR_OutputFlowFrames:
# based on SaveImageSequence by mtb

    def __init__(self):
        self.type = "output"

    @classmethod
    def INPUT_TYPES(cls):
    
        output_dir = folder_paths.output_directory
        output_folders = [name for name in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir,name)) and len(os.listdir(os.path.join(output_dir,name))) != 0]
    
        return {
            "required": {"output_folder": (sorted(output_folders), ),
                         "current_image": ("IMAGE", ),
                         "filename_prefix": ("STRING", {"default": "CR"}),
                         "current_frame": ("INT", {"default": 0, "min": 0, "max": 9999999, "forceInput": True}),
            },
            "optional": {"interpolated_img": ("IMAGE", ),
                         "output_path": ("STRING", {"default": '', "multiline": False}),           
            }
        }

    RETURN_TYPES = ()
    FUNCTION = "save_images"
    OUTPUT_NODE = True
    CATEGORY = icons.get("Comfyroll/Animation/IO")

    def save_images(self, output_folder, current_image, current_frame, output_path='', filename_prefix="CR", interpolated_img=None):
    
        output_dir = folder_paths.get_output_directory()  
        out_folder = os.path.join(output_dir, output_folder)
        
        if output_path != '':
            if not os.path.exists(output_path):
                print(f"[Warning] CR Output Flow Frames: The input_path `{output_path}` does not exist")
                return ("",)
            out_path = output_path     # os.path.join("", output_path)
        else:
            out_path = os.path.join(output_dir, out_folder)
        print(f"[Info] CR Output Flow Frames: Output path is `{out_path}`")
        
        if interpolated_img is not None:
        
            output_image0 = current_image[0].cpu().numpy()
            output_image1 = interpolated_img[0].cpu().numpy()
        
            img0 = Image.fromarray(np.clip(output_image0 * 255.0, 0, 255).astype(np.uint8))
            img1 = Image.fromarray(np.clip(output_image1 * 255.0, 0, 255).astype(np.uint8))
        
            output_filename0 = f"{filename_prefix}_{current_frame:05}_0.png"
            output_filename1 = f"{filename_prefix}_{current_frame:05}_1.png"
            print(f"[Warning] CR Output Flow Frames: Saved {filename_prefix}_{current_frame:05}_0.png")
            print(f"[Warning] CR Output Flow Frames: Saved {filename_prefix}_{current_frame:05}_1.png")
            
            resolved_image_path0 = out_path + "/" + output_filename0
            resolved_image_path1 = out_path + "/" + output_filename1

            img0.save(resolved_image_path0, pnginfo="", compress_level=4)
            img1.save(resolved_image_path1, pnginfo="", compress_level=4)            
        else:
            output_image0 = current_image[0].cpu().numpy()
            img0 = Image.fromarray(np.clip(output_image0 * 255.0, 0, 255).astype(np.uint8))
            output_filename0 = f"{filename_prefix}_{current_frame:05}.png"
            resolved_image_path0 = out_path + "/" + output_filename0
            img0.save(resolved_image_path0, pnginfo="", compress_level=4)
            print(f"[Info] CR Output Flow Frames: Saved {filename_prefix}_{current_frame:05}.png")

        result = {"ui": {"images": [{"filename": output_filename0,"subfolder": out_path,"type": self.type,}]}}
        
        return result

#---------------------------------------------------------------------------------------------------------------------#
# MAPPINGS
#---------------------------------------------------------------------------------------------------------------------#
# For reference only, actual mappings are in __init__.py
# 3 nodes released
'''
NODE_CLASS_MAPPINGS = {
    # IO
    "CR Load Animation Frames":CR_LoadAnimationFrames,
    "CR Load Flow Frames":CR_LoadFlowFrames,
    "CR Output Flow Frames":CR_OutputFlowFrames,
}
'''