File size: 19,861 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
#---------------------------------------------------------------------------------------------------------------------#
# Comfyroll Studio custom nodes by RockOfFire and Akatsuzi https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes
# for ComfyUI https://github.com/comfyanonymous/ComfyUI
#---------------------------------------------------------------------------------------------------------------------#
import os
import sys
import comfy.sd
import comfy.utils
import folder_paths
import hashlib
from random import random, uniform
from ..categories import icons
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
#---------------------------------------------------------------------------------------------------------------------#
# LoRA Nodes
#---------------------------------------------------------------------------------------------------------------------#
# This is a load lora node with an added switch to turn on or off. On will add the lora and off will skip the node.
class CR_LoraLoader:
def __init__(self):
self.loaded_lora = None
@classmethod
def INPUT_TYPES(s):
file_list = folder_paths.get_filename_list("loras")
file_list.insert(0, "None")
return {"required": { "model": ("MODEL",),
"clip": ("CLIP", ),
"switch": (["On","Off"],),
"lora_name": (file_list, ),
"strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
}}
RETURN_TYPES = ("MODEL", "CLIP", "STRING", )
RETURN_NAMES = ("MODEL", "CLIP", "show_help", )
FUNCTION = "load_lora"
CATEGORY = icons.get("Comfyroll/LoRA")
def load_lora(self, model, clip, switch, lora_name, strength_model, strength_clip):
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/LoRA-Nodes#cr-load-lora"
if strength_model == 0 and strength_clip == 0:
return (model, clip, show_help, )
if switch == "Off" or lora_name == "None":
return (model, clip, show_help, )
lora_path = folder_paths.get_full_path("loras", lora_name)
lora = None
if self.loaded_lora is not None:
if self.loaded_lora[0] == lora_path:
lora = self.loaded_lora[1]
else:
del self.loaded_lora
if lora is None:
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
self.loaded_lora = (lora_path, lora)
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
return (model_lora, clip_lora, show_help, )
#---------------------------------------------------------------------------------------------------------------------#
# Based on Efficiency Nodes
# This is a lora stack where a single node has 3 different loras each with their own switch
class CR_LoRAStack:
@classmethod
def INPUT_TYPES(cls):
loras = ["None"] + folder_paths.get_filename_list("loras")
return {"required": {
"switch_1": (["Off","On"],),
"lora_name_1": (loras,),
"model_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"switch_2": (["Off","On"],),
"lora_name_2": (loras,),
"model_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"switch_3": (["Off","On"],),
"lora_name_3": (loras,),
"model_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
},
"optional": {"lora_stack": ("LORA_STACK",)
},
}
RETURN_TYPES = ("LORA_STACK", "STRING", )
RETURN_NAMES = ("LORA_STACK", "show_help", )
FUNCTION = "lora_stacker"
CATEGORY = icons.get("Comfyroll/LoRA")
def lora_stacker(self, lora_name_1, model_weight_1, clip_weight_1, switch_1, lora_name_2, model_weight_2, clip_weight_2, switch_2, lora_name_3, model_weight_3, clip_weight_3, switch_3, lora_stack=None):
# Initialise the list
lora_list=list()
if lora_stack is not None:
lora_list.extend([l for l in lora_stack if l[0] != "None"])
if lora_name_1 != "None" and switch_1 == "On":
lora_list.extend([(lora_name_1, model_weight_1, clip_weight_1)]),
if lora_name_2 != "None" and switch_2 == "On":
lora_list.extend([(lora_name_2, model_weight_2, clip_weight_2)]),
if lora_name_3 != "None" and switch_3 == "On":
lora_list.extend([(lora_name_3, model_weight_3, clip_weight_3)]),
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/LoRA-Nodes#cr-lora-stack"
return (lora_list, show_help, )
#---------------------------------------------------------------------------------------------------------------------#
# This applies the lora stack.
class CR_ApplyLoRAStack:
@classmethod
def INPUT_TYPES(cls):
return {"required": {"model": ("MODEL",),
"clip": ("CLIP", ),
"lora_stack": ("LORA_STACK", ),
}
}
RETURN_TYPES = ("MODEL", "CLIP", "STRING", )
RETURN_NAMES = ("MODEL", "CLIP", "show_help", )
FUNCTION = "apply_lora_stack"
CATEGORY = icons.get("Comfyroll/LoRA")
def apply_lora_stack(self, model, clip, lora_stack=None,):
show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/LoRA-Nodes#cr-apply-lora-stack"
# Initialise the list
lora_params = list()
# Extend lora_params with lora-stack items
if lora_stack:
lora_params.extend(lora_stack)
else:
return (model, clip, show_help,)
# Initialise the model and clip
model_lora = model
clip_lora = clip
# Loop through the list
for tup in lora_params:
lora_name, strength_model, strength_clip = tup
lora_path = folder_paths.get_full_path("loras", lora_name)
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
model_lora, clip_lora = comfy.sd.load_lora_for_models(model_lora, clip_lora, lora, strength_model, strength_clip)
return (model_lora, clip_lora, show_help,)
#---------------------------------------------------------------------------------------------------------------------#
# This is adds to a LoRA stack chain, which produces a LoRA instance with a randomized weight within a range.
# Stride sets the number of iterations before weight is re-randomized.
class CR_RandomWeightLoRA:
@classmethod
def INPUT_TYPES(cls):
loras = ["None"] + folder_paths.get_filename_list("loras")
return {"required": {
"stride": (("INT", {"default": 1, "min": 1, "max": 1000})),
"force_randomize_after_stride": (["Off","On"],),
"lora_name": (loras,),
"switch": (["Off","On"],),
"weight_min": ("FLOAT", {"default": 0.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"weight_max": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_weight": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
},
"optional": {"lora_stack": ("LORA_STACK",)
},
}
RETURN_TYPES = ("LORA_STACK",)
FUNCTION = "random_weight_lora"
CATEGORY = icons.get("Comfyroll/LoRA")
LastWeightMap = {}
StridesMap = {}
LastHashMap = {}
@staticmethod
def getIdHash(lora_name: str, force_randomize_after_stride, stride, weight_min, weight_max, clip_weight) -> int:
fl_str = f"{lora_name}_{force_randomize_after_stride}_{stride}_{weight_min:.2f}_{weight_max:.2f}_{clip_weight:.2f}"
return hashlib.sha256(fl_str.encode('utf-8')).hexdigest()
@classmethod
def IS_CHANGED(cls, stride, force_randomize_after_stride, lora_name, switch, weight_min, weight_max, clip_weight, lora_stack=None):
id_hash = CR_RandomWeightLoRA.getIdHash(lora_name, force_randomize_after_stride, stride, weight_min, weight_max, clip_weight)
if switch == "Off":
return id_hash + "_Off"
if lora_name == "None":
return id_hash
if id_hash not in CR_RandomWeightLoRA.StridesMap:
CR_RandomWeightLoRA.StridesMap[id_hash] = 0
CR_RandomWeightLoRA.StridesMap[id_hash] += 1
if stride > 1 and CR_RandomWeightLoRA.StridesMap[id_hash] < stride and id_hash in CR_RandomWeightLoRA.LastHashMap:
return CR_RandomWeightLoRA.LastHashMap[id_hash]
else:
CR_RandomWeightLoRA.StridesMap[id_hash] = 0
last_weight = CR_RandomWeightLoRA.LastWeightMap.get(id_hash, None)
weight = uniform(weight_min, weight_max)
if last_weight is not None:
while weight == last_weight:
weight = uniform(weight_min, weight_max)
CR_RandomWeightLoRA.LastWeightMap[id_hash] = weight
hash_str = f"{id_hash}_{weight:.3f}"
CR_RandomWeightLoRA.LastHashMap[id_hash] = hash_str
return hash_str
def random_weight_lora(self, stride, force_randomize_after_stride, lora_name, switch, weight_min, weight_max, clip_weight, lora_stack=None):
id_hash = CR_RandomWeightLoRA.getIdHash(lora_name, force_randomize_after_stride, stride, weight_min, weight_max, clip_weight)
# Initialise the list
lora_list=list()
if lora_stack is not None:
lora_list.extend([l for l in lora_stack if l[0] != "None"])
weight = CR_RandomWeightLoRA.LastWeightMap.get(id_hash, 0.0)
if lora_name != "None" and switch == "On":
lora_list.extend([(lora_name, weight, clip_weight)]),
return (lora_list,)
#---------------------------------------------------------------------------------------------------------------------#
# This is a lora stack where a single node has 3 different loras which can be applied randomly. Exclusive mode causes only one lora to be applied.
# If exclusive mode is on, each LoRA's chance of being applied is evaluated, and the lora with the highest chance is applied
# Stride sets the minimum number of cycles before a re-randomization is performed.
class CR_RandomLoRAStack:
@classmethod
def INPUT_TYPES(cls):
loras = ["None"] + folder_paths.get_filename_list("loras")
return {"required": {
"exclusive_mode": (["Off","On"],),
"stride": (("INT", {"default": 1, "min": 1, "max": 1000})),
"force_randomize_after_stride": (["Off","On"],),
"lora_name_1": (loras,),
"switch_1": (["Off","On"],),
"chance_1": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"model_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"lora_name_2": (loras,),
"switch_2": (["Off","On"],),
"chance_2": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"model_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"lora_name_3": (loras,),
"switch_3": (["Off","On"],),
"chance_3": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"model_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
},
"optional": {"lora_stack": ("LORA_STACK",)
},
}
RETURN_TYPES = ("LORA_STACK",)
FUNCTION = "random_lora_stacker"
CATEGORY = icons.get("Comfyroll/LoRA")
UsedLorasMap = {}
StridesMap = {}
LastHashMap = {}
@staticmethod
def getIdHash(lora_name_1: str, lora_name_2: str, lora_name_3: str) -> int:
id_set = set([lora_name_1, lora_name_2, lora_name_3])
id_hash = hash(frozenset(id_set))
return id_hash
@staticmethod
def deduplicateLoraNames(lora_name_1: str, lora_name_2: str, lora_name_3: str):
is_same_1 = False
is_same_2 = False
is_same_3 = False
if lora_name_1 == lora_name_2:
is_same_1 = True
is_same_2 = True
if lora_name_1 == lora_name_3:
is_same_1 = True
is_same_3 = True
if lora_name_2 == lora_name_3:
is_same_2 = True
is_same_3 = True
if is_same_1:
lora_name_1 = lora_name_1 + "CR_RandomLoRAStack_1"
if is_same_2:
lora_name_2 = lora_name_2 + "CR_RandomLoRAStack_2"
if is_same_3:
lora_name_3 = lora_name_3 + "CR_RandomLoRAStack_3"
return lora_name_1, lora_name_2, lora_name_3
@staticmethod
def cleanLoraName(lora_name) -> str:
if "CR_RandomLoRAStack_1" in lora_name:
lora_name = lora_name.replace("CR_RandomLoRAStack_1", "")
elif "CR_RandomLoRAStack_2" in lora_name:
lora_name = lora_name.replace("CR_RandomLoRAStack_2", "")
elif "CR_RandomLoRAStack_3" in lora_name:
lora_name = lora_name.replace("CR_RandomLoRAStack_3", "")
return lora_name
@classmethod
def IS_CHANGED(cls, exclusive_mode, stride, force_randomize_after_stride, lora_name_1, model_weight_1, clip_weight_1, switch_1, chance_1, lora_name_2,
model_weight_2, clip_weight_2, switch_2, chance_2, lora_name_3, model_weight_3, clip_weight_3, switch_3, chance_3, lora_stack=None):
lora_set = set()
lora_name_1, lora_name_2, lora_name_3 = CR_RandomLoRAStack.deduplicateLoraNames(lora_name_1, lora_name_2, lora_name_3)
id_hash = CR_RandomLoRAStack.getIdHash(lora_name_1, lora_name_2, lora_name_3)
if id_hash not in CR_RandomLoRAStack.StridesMap:
CR_RandomLoRAStack.StridesMap[id_hash] = 0
CR_RandomLoRAStack.StridesMap[id_hash] += 1
if stride > 1 and CR_RandomLoRAStack.StridesMap[id_hash] < stride and id_hash in CR_RandomLoRAStack.LastHashMap:
return CR_RandomLoRAStack.LastHashMap[id_hash]
else:
CR_RandomLoRAStack.StridesMap[id_hash] = 0
total_on = 0
if lora_name_1 != "None" and switch_1 == "On" and chance_1 > 0.0: total_on += 1
if lora_name_2 != "None" and switch_2 == "On" and chance_2 > 0.0: total_on += 1
if lora_name_3 != "None" and switch_3 == "On" and chance_3 > 0.0: total_on += 1
def perform_randomization() -> set:
_lora_set = set()
rand_1 = random()
rand_2 = random()
rand_3 = random()
apply_1 = True if (rand_1 <= chance_1 and switch_1 == "On") else False
apply_2 = True if (rand_2 <= chance_2 and switch_2 == "On") else False
apply_3 = True if (rand_3 <= chance_3 and switch_3 == "On") else False
num_to_apply = sum([apply_1, apply_2, apply_3])
if exclusive_mode == "On" and num_to_apply > 1:
rand_dict = {}
if apply_1: rand_dict[1] = rand_1
if apply_2: rand_dict[2] = rand_2
if apply_3: rand_dict[3] = rand_3
sorted_rands = sorted(rand_dict.keys(), key=lambda k: rand_dict[k])
if sorted_rands[0] == 1:
apply_2 = False
apply_3 = False
elif sorted_rands[0] == 2:
apply_1 = False
apply_3 = False
elif sorted_rands[0] == 3:
apply_1 = False
apply_2 = False
if lora_name_1 != "None" and switch_1 == "On" and apply_1:
_lora_set.add(lora_name_1)
if lora_name_2 != "None" and switch_2 == "On" and apply_2:
_lora_set.add(lora_name_2)
if lora_name_3 != "None" and switch_3 == "On" and apply_3:
_lora_set.add(lora_name_3)
return _lora_set
last_lora_set = CR_RandomLoRAStack.UsedLorasMap.get(id_hash, set())
lora_set = perform_randomization()
if force_randomize_after_stride == "On" and len(last_lora_set) > 0 and total_on > 1:
while lora_set == last_lora_set:
lora_set = perform_randomization()
CR_RandomLoRAStack.UsedLorasMap[id_hash] = lora_set
hash_str = str(hash(frozenset(lora_set)))
CR_RandomLoRAStack.LastHashMap[id_hash] = hash_str
return hash_str
def random_lora_stacker(self, exclusive_mode, stride, force_randomize_after_stride, lora_name_1, model_weight_1, clip_weight_1, switch_1, chance_1, lora_name_2,
model_weight_2, clip_weight_2, switch_2, chance_2, lora_name_3, model_weight_3, clip_weight_3, switch_3, chance_3, lora_stack=None):
# Initialise the list
lora_list=list()
if lora_stack is not None:
lora_list.extend([l for l in lora_stack if l[0] != "None"])
lora_name_1, lora_name_2, lora_name_3 = CR_RandomLoRAStack.deduplicateLoraNames(lora_name_1, lora_name_2, lora_name_3)
id_hash = CR_RandomLoRAStack.getIdHash(lora_name_1, lora_name_2, lora_name_3)
used_loras = CR_RandomLoRAStack.UsedLorasMap.get(id_hash, set())
if lora_name_1 != "None" and switch_1 == "On" and lora_name_1 in used_loras:
lora_list.extend([(CR_RandomLoRAStack.cleanLoraName(lora_name_1), model_weight_1, clip_weight_1)]),
if lora_name_2 != "None" and switch_2 == "On" and lora_name_2 in used_loras:
lora_list.extend([(CR_RandomLoRAStack.cleanLoraName(lora_name_2), model_weight_2, clip_weight_2)]),
if lora_name_3 != "None" and switch_3 == "On" and lora_name_3 in used_loras:
lora_list.extend([(CR_RandomLoRAStack.cleanLoraName(lora_name_3), model_weight_3, clip_weight_3)]),
return (lora_list,)
#---------------------------------------------------------------------------------------------------------------------#
# MAPPINGS
#---------------------------------------------------------------------------------------------------------------------#
# For reference only, actual mappings are in __init__.py
'''
NODE_CLASS_MAPPINGS = {
"CR Load LoRA": CR_LoraLoader,
"CR LoRA Stack":CR_LoRAStack,
"CR Apply LoRA Stack":CR_ApplyLoRAStack,
"CR Random LoRA Stack":CR_RandomLoRAStack,
"CR Random Weight LoRA":CR_RandomWeightLoRA,
}
'''
|