Spaces:
ginipick
/
Running on Zero

File size: 28,503 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
"""
    This file is part of ComfyUI.
    Copyright (C) 2024 Comfy

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
"""

from __future__ import annotations
import comfy.utils
import comfy.model_management
import comfy.model_base
import logging
import torch

LORA_CLIP_MAP = {
    "mlp.fc1": "mlp_fc1",
    "mlp.fc2": "mlp_fc2",
    "self_attn.k_proj": "self_attn_k_proj",
    "self_attn.q_proj": "self_attn_q_proj",
    "self_attn.v_proj": "self_attn_v_proj",
    "self_attn.out_proj": "self_attn_out_proj",
}


def load_lora(lora, to_load):
    patch_dict = {}
    loaded_keys = set()
    for x in to_load:
        alpha_name = "{}.alpha".format(x)
        alpha = None
        if alpha_name in lora.keys():
            alpha = lora[alpha_name].item()
            loaded_keys.add(alpha_name)

        dora_scale_name = "{}.dora_scale".format(x)
        dora_scale = None
        if dora_scale_name in lora.keys():
            dora_scale = lora[dora_scale_name]
            loaded_keys.add(dora_scale_name)

        reshape_name = "{}.reshape_weight".format(x)
        reshape = None
        if reshape_name in lora.keys():
            try:
                reshape = lora[reshape_name].tolist()
                loaded_keys.add(reshape_name)
            except:
                pass

        regular_lora = "{}.lora_up.weight".format(x)
        diffusers_lora = "{}_lora.up.weight".format(x)
        diffusers2_lora = "{}.lora_B.weight".format(x)
        diffusers3_lora = "{}.lora.up.weight".format(x)
        mochi_lora = "{}.lora_B".format(x)
        transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
        A_name = None

        if regular_lora in lora.keys():
            A_name = regular_lora
            B_name = "{}.lora_down.weight".format(x)
            mid_name = "{}.lora_mid.weight".format(x)
        elif diffusers_lora in lora.keys():
            A_name = diffusers_lora
            B_name = "{}_lora.down.weight".format(x)
            mid_name = None
        elif diffusers2_lora in lora.keys():
            A_name = diffusers2_lora
            B_name = "{}.lora_A.weight".format(x)
            mid_name = None
        elif diffusers3_lora in lora.keys():
            A_name = diffusers3_lora
            B_name = "{}.lora.down.weight".format(x)
            mid_name = None
        elif mochi_lora in lora.keys():
            A_name = mochi_lora
            B_name = "{}.lora_A".format(x)
            mid_name = None
        elif transformers_lora in lora.keys():
            A_name = transformers_lora
            B_name ="{}.lora_linear_layer.down.weight".format(x)
            mid_name = None

        if A_name is not None:
            mid = None
            if mid_name is not None and mid_name in lora.keys():
                mid = lora[mid_name]
                loaded_keys.add(mid_name)
            patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale, reshape))
            loaded_keys.add(A_name)
            loaded_keys.add(B_name)


        ######## loha
        hada_w1_a_name = "{}.hada_w1_a".format(x)
        hada_w1_b_name = "{}.hada_w1_b".format(x)
        hada_w2_a_name = "{}.hada_w2_a".format(x)
        hada_w2_b_name = "{}.hada_w2_b".format(x)
        hada_t1_name = "{}.hada_t1".format(x)
        hada_t2_name = "{}.hada_t2".format(x)
        if hada_w1_a_name in lora.keys():
            hada_t1 = None
            hada_t2 = None
            if hada_t1_name in lora.keys():
                hada_t1 = lora[hada_t1_name]
                hada_t2 = lora[hada_t2_name]
                loaded_keys.add(hada_t1_name)
                loaded_keys.add(hada_t2_name)

            patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale))
            loaded_keys.add(hada_w1_a_name)
            loaded_keys.add(hada_w1_b_name)
            loaded_keys.add(hada_w2_a_name)
            loaded_keys.add(hada_w2_b_name)


        ######## lokr
        lokr_w1_name = "{}.lokr_w1".format(x)
        lokr_w2_name = "{}.lokr_w2".format(x)
        lokr_w1_a_name = "{}.lokr_w1_a".format(x)
        lokr_w1_b_name = "{}.lokr_w1_b".format(x)
        lokr_t2_name = "{}.lokr_t2".format(x)
        lokr_w2_a_name = "{}.lokr_w2_a".format(x)
        lokr_w2_b_name = "{}.lokr_w2_b".format(x)

        lokr_w1 = None
        if lokr_w1_name in lora.keys():
            lokr_w1 = lora[lokr_w1_name]
            loaded_keys.add(lokr_w1_name)

        lokr_w2 = None
        if lokr_w2_name in lora.keys():
            lokr_w2 = lora[lokr_w2_name]
            loaded_keys.add(lokr_w2_name)

        lokr_w1_a = None
        if lokr_w1_a_name in lora.keys():
            lokr_w1_a = lora[lokr_w1_a_name]
            loaded_keys.add(lokr_w1_a_name)

        lokr_w1_b = None
        if lokr_w1_b_name in lora.keys():
            lokr_w1_b = lora[lokr_w1_b_name]
            loaded_keys.add(lokr_w1_b_name)

        lokr_w2_a = None
        if lokr_w2_a_name in lora.keys():
            lokr_w2_a = lora[lokr_w2_a_name]
            loaded_keys.add(lokr_w2_a_name)

        lokr_w2_b = None
        if lokr_w2_b_name in lora.keys():
            lokr_w2_b = lora[lokr_w2_b_name]
            loaded_keys.add(lokr_w2_b_name)

        lokr_t2 = None
        if lokr_t2_name in lora.keys():
            lokr_t2 = lora[lokr_t2_name]
            loaded_keys.add(lokr_t2_name)

        if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
            patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale))

        #glora
        a1_name = "{}.a1.weight".format(x)
        a2_name = "{}.a2.weight".format(x)
        b1_name = "{}.b1.weight".format(x)
        b2_name = "{}.b2.weight".format(x)
        if a1_name in lora:
            patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale))
            loaded_keys.add(a1_name)
            loaded_keys.add(a2_name)
            loaded_keys.add(b1_name)
            loaded_keys.add(b2_name)

        w_norm_name = "{}.w_norm".format(x)
        b_norm_name = "{}.b_norm".format(x)
        w_norm = lora.get(w_norm_name, None)
        b_norm = lora.get(b_norm_name, None)

        if w_norm is not None:
            loaded_keys.add(w_norm_name)
            patch_dict[to_load[x]] = ("diff", (w_norm,))
            if b_norm is not None:
                loaded_keys.add(b_norm_name)
                patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (b_norm,))

        diff_name = "{}.diff".format(x)
        diff_weight = lora.get(diff_name, None)
        if diff_weight is not None:
            patch_dict[to_load[x]] = ("diff", (diff_weight,))
            loaded_keys.add(diff_name)

        diff_bias_name = "{}.diff_b".format(x)
        diff_bias = lora.get(diff_bias_name, None)
        if diff_bias is not None:
            patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,))
            loaded_keys.add(diff_bias_name)

        set_weight_name = "{}.set_weight".format(x)
        set_weight = lora.get(set_weight_name, None)
        if set_weight is not None:
            patch_dict[to_load[x]] = ("set", (set_weight,))
            loaded_keys.add(set_weight_name)

    for x in lora.keys():
        if x not in loaded_keys:
            logging.warning("lora key not loaded: {}".format(x))

    return patch_dict

def model_lora_keys_clip(model, key_map={}):
    sdk = model.state_dict().keys()
    for k in sdk:
        if k.endswith(".weight"):
            key_map["text_encoders.{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names

    text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}"
    clip_l_present = False
    clip_g_present = False
    for b in range(32): #TODO: clean up
        for c in LORA_CLIP_MAP:
            k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
                key_map[lora_key] = k
                lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c])
                key_map[lora_key] = k
                lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                key_map[lora_key] = k

            k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c])
                key_map[lora_key] = k
                lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                key_map[lora_key] = k
                clip_l_present = True
                lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                key_map[lora_key] = k

            k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c)
            if k in sdk:
                clip_g_present = True
                if clip_l_present:
                    lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base
                    key_map[lora_key] = k
                    lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                    key_map[lora_key] = k
                else:
                    lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner
                    key_map[lora_key] = k
                    lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora
                    key_map[lora_key] = k
                    lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #cascade lora: TODO put lora key prefix in the model config
                    key_map[lora_key] = k

    for k in sdk:
        if k.endswith(".weight"):
            if k.startswith("t5xxl.transformer."):#OneTrainer SD3 and Flux lora
                l_key = k[len("t5xxl.transformer."):-len(".weight")]
                t5_index = 1
                if clip_g_present:
                    t5_index += 1
                if clip_l_present:
                    t5_index += 1
                    if t5_index == 2:
                        key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k #OneTrainer Flux
                        t5_index += 1

                key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k
            elif k.startswith("hydit_clip.transformer.bert."): #HunyuanDiT Lora
                l_key = k[len("hydit_clip.transformer.bert."):-len(".weight")]
                lora_key = "lora_te1_{}".format(l_key.replace(".", "_"))
                key_map[lora_key] = k


    k = "clip_g.transformer.text_projection.weight"
    if k in sdk:
        key_map["lora_prior_te_text_projection"] = k #cascade lora?
        # key_map["text_encoder.text_projection"] = k #TODO: check if other lora have the text_projection too
        key_map["lora_te2_text_projection"] = k #OneTrainer SD3 lora

    k = "clip_l.transformer.text_projection.weight"
    if k in sdk:
        key_map["lora_te1_text_projection"] = k #OneTrainer SD3 lora, not necessary but omits warning

    return key_map

def model_lora_keys_unet(model, key_map={}):
    sd = model.state_dict()
    sdk = sd.keys()

    for k in sdk:
        if k.startswith("diffusion_model."):
            if k.endswith(".weight"):
                key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
                key_map["lora_unet_{}".format(key_lora)] = k
                key_map["lora_prior_unet_{}".format(key_lora)] = k #cascade lora: TODO put lora key prefix in the model config
                key_map["{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names
            else:
                key_map["{}".format(k)] = k #generic lora format for not .weight without any weird key names

    diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
    for k in diffusers_keys:
        if k.endswith(".weight"):
            unet_key = "diffusion_model.{}".format(diffusers_keys[k])
            key_lora = k[:-len(".weight")].replace(".", "_")
            key_map["lora_unet_{}".format(key_lora)] = unet_key
            key_map["lycoris_{}".format(key_lora)] = unet_key #simpletuner lycoris format

            diffusers_lora_prefix = ["", "unet."]
            for p in diffusers_lora_prefix:
                diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_"))
                if diffusers_lora_key.endswith(".to_out.0"):
                    diffusers_lora_key = diffusers_lora_key[:-2]
                key_map[diffusers_lora_key] = unet_key

    if isinstance(model, comfy.model_base.SD3): #Diffusers lora SD3
        diffusers_keys = comfy.utils.mmdit_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
        for k in diffusers_keys:
            if k.endswith(".weight"):
                to = diffusers_keys[k]
                key_lora = "transformer.{}".format(k[:-len(".weight")]) #regular diffusers sd3 lora format
                key_map[key_lora] = to

                key_lora = "base_model.model.{}".format(k[:-len(".weight")]) #format for flash-sd3 lora and others?
                key_map[key_lora] = to

                key_lora = "lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_")) #OneTrainer lora
                key_map[key_lora] = to

                key_lora = "lycoris_{}".format(k[:-len(".weight")].replace(".", "_")) #simpletuner lycoris format
                key_map[key_lora] = to


    if isinstance(model, comfy.model_base.AuraFlow): #Diffusers lora AuraFlow
        diffusers_keys = comfy.utils.auraflow_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
        for k in diffusers_keys:
            if k.endswith(".weight"):
                to = diffusers_keys[k]
                key_lora = "transformer.{}".format(k[:-len(".weight")]) #simpletrainer and probably regular diffusers lora format
                key_map[key_lora] = to

    if isinstance(model, comfy.model_base.HunyuanDiT):
        for k in sdk:
            if k.startswith("diffusion_model.") and k.endswith(".weight"):
                key_lora = k[len("diffusion_model."):-len(".weight")]
                key_map["base_model.model.{}".format(key_lora)] = k #official hunyuan lora format

    if isinstance(model, comfy.model_base.Flux): #Diffusers lora Flux
        diffusers_keys = comfy.utils.flux_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
        for k in diffusers_keys:
            if k.endswith(".weight"):
                to = diffusers_keys[k]
                key_map["transformer.{}".format(k[:-len(".weight")])] = to #simpletrainer and probably regular diffusers flux lora format
                key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris
                key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer

    if isinstance(model, comfy.model_base.GenmoMochi):
        for k in sdk:
            if k.startswith("diffusion_model.") and k.endswith(".weight"): #Official Mochi lora format
                key_lora = k[len("diffusion_model."):-len(".weight")]
                key_map["{}".format(key_lora)] = k

    return key_map


def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
    dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
    lora_diff *= alpha
    weight_calc = weight + function(lora_diff).type(weight.dtype)
    weight_norm = (
        weight_calc.transpose(0, 1)
        .reshape(weight_calc.shape[1], -1)
        .norm(dim=1, keepdim=True)
        .reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
        .transpose(0, 1)
    )

    weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
    if strength != 1.0:
        weight_calc -= weight
        weight += strength * (weight_calc)
    else:
        weight[:] = weight_calc
    return weight

def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor:
    """
    Pad a tensor to a new shape with zeros.

    Args:
        tensor (torch.Tensor): The original tensor to be padded.
        new_shape (List[int]): The desired shape of the padded tensor.

    Returns:
        torch.Tensor: A new tensor padded with zeros to the specified shape.

    Note:
        If the new shape is smaller than the original tensor in any dimension,
        the original tensor will be truncated in that dimension.
    """
    if any([new_shape[i] < tensor.shape[i] for i in range(len(new_shape))]):
        raise ValueError("The new shape must be larger than the original tensor in all dimensions")

    if len(new_shape) != len(tensor.shape):
        raise ValueError("The new shape must have the same number of dimensions as the original tensor")

    # Create a new tensor filled with zeros
    padded_tensor = torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device)

    # Create slicing tuples for both tensors
    orig_slices = tuple(slice(0, dim) for dim in tensor.shape)
    new_slices = tuple(slice(0, dim) for dim in tensor.shape)

    # Copy the original tensor into the new tensor
    padded_tensor[new_slices] = tensor[orig_slices]

    return padded_tensor

def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32):
    for p in patches:
        strength = p[0]
        v = p[1]
        strength_model = p[2]
        offset = p[3]
        function = p[4]
        if function is None:
            function = lambda a: a

        old_weight = None
        if offset is not None:
            old_weight = weight
            weight = weight.narrow(offset[0], offset[1], offset[2])

        if strength_model != 1.0:
            weight *= strength_model

        if isinstance(v, list):
            v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), )

        if len(v) == 1:
            patch_type = "diff"
        elif len(v) == 2:
            patch_type = v[0]
            v = v[1]

        if patch_type == "diff":
            diff: torch.Tensor = v[0]
            # An extra flag to pad the weight if the diff's shape is larger than the weight
            do_pad_weight = len(v) > 1 and v[1]['pad_weight']
            if do_pad_weight and diff.shape != weight.shape:
                logging.info("Pad weight {} from {} to shape: {}".format(key, weight.shape, diff.shape))
                weight = pad_tensor_to_shape(weight, diff.shape)

            if strength != 0.0:
                if diff.shape != weight.shape:
                    logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, diff.shape, weight.shape))
                else:
                    weight += function(strength * comfy.model_management.cast_to_device(diff, weight.device, weight.dtype))
        elif patch_type == "set":
            weight.copy_(v[0])
        elif patch_type == "lora": #lora/locon
            mat1 = comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype)
            mat2 = comfy.model_management.cast_to_device(v[1], weight.device, intermediate_dtype)
            dora_scale = v[4]
            reshape = v[5]

            if reshape is not None:
                weight = pad_tensor_to_shape(weight, reshape)

            if v[2] is not None:
                alpha = v[2] / mat2.shape[0]
            else:
                alpha = 1.0

            if v[3] is not None:
                #locon mid weights, hopefully the math is fine because I didn't properly test it
                mat3 = comfy.model_management.cast_to_device(v[3], weight.device, intermediate_dtype)
                final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
                mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
            try:
                lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
                if dora_scale is not None:
                    weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
                else:
                    weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
            except Exception as e:
                logging.error("ERROR {} {} {}".format(patch_type, key, e))
        elif patch_type == "lokr":
            w1 = v[0]
            w2 = v[1]
            w1_a = v[3]
            w1_b = v[4]
            w2_a = v[5]
            w2_b = v[6]
            t2 = v[7]
            dora_scale = v[8]
            dim = None

            if w1 is None:
                dim = w1_b.shape[0]
                w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype),
                                comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype))
            else:
                w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype)

            if w2 is None:
                dim = w2_b.shape[0]
                if t2 is None:
                    w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype),
                                    comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype))
                else:
                    w2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                        comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
                                        comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype),
                                        comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype))
            else:
                w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype)

            if len(w2.shape) == 4:
                w1 = w1.unsqueeze(2).unsqueeze(2)
            if v[2] is not None and dim is not None:
                alpha = v[2] / dim
            else:
                alpha = 1.0

            try:
                lora_diff = torch.kron(w1, w2).reshape(weight.shape)
                if dora_scale is not None:
                    weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
                else:
                    weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
            except Exception as e:
                logging.error("ERROR {} {} {}".format(patch_type, key, e))
        elif patch_type == "loha":
            w1a = v[0]
            w1b = v[1]
            if v[2] is not None:
                alpha = v[2] / w1b.shape[0]
            else:
                alpha = 1.0

            w2a = v[3]
            w2b = v[4]
            dora_scale = v[7]
            if v[5] is not None: #cp decomposition
                t1 = v[5]
                t2 = v[6]
                m1 = torch.einsum('i j k l, j r, i p -> p r k l',
                                    comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype),
                                    comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype),
                                    comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype))

                m2 = torch.einsum('i j k l, j r, i p -> p r k l',
                                    comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
                                    comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype),
                                    comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype))
            else:
                m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype),
                                comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype))
                m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype),
                                comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype))

            try:
                lora_diff = (m1 * m2).reshape(weight.shape)
                if dora_scale is not None:
                    weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
                else:
                    weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
            except Exception as e:
                logging.error("ERROR {} {} {}".format(patch_type, key, e))
        elif patch_type == "glora":
            dora_scale = v[5]

            old_glora = False
            if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]:
                rank = v[0].shape[0]
                old_glora = True

            if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]:
                if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]:
                    pass
                else:
                    old_glora = False
                    rank = v[1].shape[0]

            a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype)
            a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype)
            b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype)
            b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype)

            if v[4] is not None:
                alpha = v[4] / rank
            else:
                alpha = 1.0

            try:
                if old_glora:
                    lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora
                else:
                    if weight.dim() > 2:
                        lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
                    else:
                        lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
                    lora_diff += torch.mm(b1, b2).reshape(weight.shape)

                if dora_scale is not None:
                    weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
                else:
                    weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
            except Exception as e:
                logging.error("ERROR {} {} {}".format(patch_type, key, e))
        else:
            logging.warning("patch type not recognized {} {}".format(patch_type, key))

        if old_weight is not None:
            weight = old_weight

    return weight