Spaces:
ginipick
/
Running on Zero

File size: 7,931 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import functools
from typing import Callable, Iterable, Union

import torch
from einops import rearrange, repeat

import comfy.ops
ops = comfy.ops.disable_weight_init

from .diffusionmodules.model import (
    AttnBlock,
    Decoder,
    ResnetBlock,
)
from .diffusionmodules.openaimodel import ResBlock, timestep_embedding
from .attention import BasicTransformerBlock

def partialclass(cls, *args, **kwargs):
    class NewCls(cls):
        __init__ = functools.partialmethod(cls.__init__, *args, **kwargs)

    return NewCls


class VideoResBlock(ResnetBlock):
    def __init__(
        self,
        out_channels,
        *args,
        dropout=0.0,
        video_kernel_size=3,
        alpha=0.0,
        merge_strategy="learned",
        **kwargs,
    ):
        super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs)
        if video_kernel_size is None:
            video_kernel_size = [3, 1, 1]
        self.time_stack = ResBlock(
            channels=out_channels,
            emb_channels=0,
            dropout=dropout,
            dims=3,
            use_scale_shift_norm=False,
            use_conv=False,
            up=False,
            down=False,
            kernel_size=video_kernel_size,
            use_checkpoint=False,
            skip_t_emb=True,
        )

        self.merge_strategy = merge_strategy
        if self.merge_strategy == "fixed":
            self.register_buffer("mix_factor", torch.Tensor([alpha]))
        elif self.merge_strategy == "learned":
            self.register_parameter(
                "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
            )
        else:
            raise ValueError(f"unknown merge strategy {self.merge_strategy}")

    def get_alpha(self, bs):
        if self.merge_strategy == "fixed":
            return self.mix_factor
        elif self.merge_strategy == "learned":
            return torch.sigmoid(self.mix_factor)
        else:
            raise NotImplementedError()

    def forward(self, x, temb, skip_video=False, timesteps=None):
        b, c, h, w = x.shape
        if timesteps is None:
            timesteps = b

        x = super().forward(x, temb)

        if not skip_video:
            x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)

            x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)

            x = self.time_stack(x, temb)

            alpha = self.get_alpha(bs=b // timesteps).to(x.device)
            x = alpha * x + (1.0 - alpha) * x_mix

            x = rearrange(x, "b c t h w -> (b t) c h w")
        return x


class AE3DConv(ops.Conv2d):
    def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs):
        super().__init__(in_channels, out_channels, *args, **kwargs)
        if isinstance(video_kernel_size, Iterable):
            padding = [int(k // 2) for k in video_kernel_size]
        else:
            padding = int(video_kernel_size // 2)

        self.time_mix_conv = ops.Conv3d(
            in_channels=out_channels,
            out_channels=out_channels,
            kernel_size=video_kernel_size,
            padding=padding,
        )

    def forward(self, input, timesteps=None, skip_video=False):
        if timesteps is None:
            timesteps = input.shape[0]
        x = super().forward(input)
        if skip_video:
            return x
        x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
        x = self.time_mix_conv(x)
        return rearrange(x, "b c t h w -> (b t) c h w")


class AttnVideoBlock(AttnBlock):
    def __init__(
        self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
    ):
        super().__init__(in_channels)
        # no context, single headed, as in base class
        self.time_mix_block = BasicTransformerBlock(
            dim=in_channels,
            n_heads=1,
            d_head=in_channels,
            checkpoint=False,
            ff_in=True,
        )

        time_embed_dim = self.in_channels * 4
        self.video_time_embed = torch.nn.Sequential(
            ops.Linear(self.in_channels, time_embed_dim),
            torch.nn.SiLU(),
            ops.Linear(time_embed_dim, self.in_channels),
        )

        self.merge_strategy = merge_strategy
        if self.merge_strategy == "fixed":
            self.register_buffer("mix_factor", torch.Tensor([alpha]))
        elif self.merge_strategy == "learned":
            self.register_parameter(
                "mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
            )
        else:
            raise ValueError(f"unknown merge strategy {self.merge_strategy}")

    def forward(self, x, timesteps=None, skip_time_block=False):
        if skip_time_block:
            return super().forward(x)

        if timesteps is None:
            timesteps = x.shape[0]

        x_in = x
        x = self.attention(x)
        h, w = x.shape[2:]
        x = rearrange(x, "b c h w -> b (h w) c")

        x_mix = x
        num_frames = torch.arange(timesteps, device=x.device)
        num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
        num_frames = rearrange(num_frames, "b t -> (b t)")
        t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
        emb = self.video_time_embed(t_emb)  # b, n_channels
        emb = emb[:, None, :]
        x_mix = x_mix + emb

        alpha = self.get_alpha().to(x.device)
        x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
        x = alpha * x + (1.0 - alpha) * x_mix  # alpha merge

        x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
        x = self.proj_out(x)

        return x_in + x

    def get_alpha(
        self,
    ):
        if self.merge_strategy == "fixed":
            return self.mix_factor
        elif self.merge_strategy == "learned":
            return torch.sigmoid(self.mix_factor)
        else:
            raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")



def make_time_attn(
    in_channels,
    attn_type="vanilla",
    attn_kwargs=None,
    alpha: float = 0,
    merge_strategy: str = "learned",
):
    return partialclass(
        AttnVideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy
    )


class Conv2DWrapper(torch.nn.Conv2d):
    def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor:
        return super().forward(input)


class VideoDecoder(Decoder):
    available_time_modes = ["all", "conv-only", "attn-only"]

    def __init__(
        self,
        *args,
        video_kernel_size: Union[int, list] = 3,
        alpha: float = 0.0,
        merge_strategy: str = "learned",
        time_mode: str = "conv-only",
        **kwargs,
    ):
        self.video_kernel_size = video_kernel_size
        self.alpha = alpha
        self.merge_strategy = merge_strategy
        self.time_mode = time_mode
        assert (
            self.time_mode in self.available_time_modes
        ), f"time_mode parameter has to be in {self.available_time_modes}"

        if self.time_mode != "attn-only":
            kwargs["conv_out_op"] = partialclass(AE3DConv, video_kernel_size=self.video_kernel_size)
        if self.time_mode not in ["conv-only", "only-last-conv"]:
            kwargs["attn_op"] = partialclass(make_time_attn, alpha=self.alpha, merge_strategy=self.merge_strategy)
        if self.time_mode not in ["attn-only", "only-last-conv"]:
            kwargs["resnet_op"] = partialclass(VideoResBlock, video_kernel_size=self.video_kernel_size, alpha=self.alpha, merge_strategy=self.merge_strategy)

        super().__init__(*args, **kwargs)

    def get_last_layer(self, skip_time_mix=False, **kwargs):
        if self.time_mode == "attn-only":
            raise NotImplementedError("TODO")
        else:
            return (
                self.conv_out.time_mix_conv.weight
                if not skip_time_mix
                else self.conv_out.weight
            )