Spaces:
ginipick
/
Running on Zero

File size: 7,724 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from comfy import sd1_clip
from comfy import sdxl_clip
from transformers import T5TokenizerFast
import comfy.text_encoders.t5
import torch
import os
import comfy.model_management
import logging

class T5XXLModel(sd1_clip.SDClipModel):
    def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=False, model_options={}):
        textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json")
        t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None)
        if t5xxl_scaled_fp8 is not None:
            model_options = model_options.copy()
            model_options["scaled_fp8"] = t5xxl_scaled_fp8

        super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)


def t5_xxl_detect(state_dict, prefix=""):
    out = {}
    t5_key = "{}encoder.final_layer_norm.weight".format(prefix)
    if t5_key in state_dict:
        out["dtype_t5"] = state_dict[t5_key].dtype

    scaled_fp8_key = "{}scaled_fp8".format(prefix)
    if scaled_fp8_key in state_dict:
        out["t5xxl_scaled_fp8"] = state_dict[scaled_fp8_key].dtype

    return out

class T5XXLTokenizer(sd1_clip.SDTokenizer):
    def __init__(self, embedding_directory=None, tokenizer_data={}):
        tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
        super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)


class SD3Tokenizer:
    def __init__(self, embedding_directory=None, tokenizer_data={}):
        clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
        self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
        self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory)
        self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)

    def tokenize_with_weights(self, text:str, return_word_ids=False):
        out = {}
        out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
        out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
        out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
        return out

    def untokenize(self, token_weight_pair):
        return self.clip_g.untokenize(token_weight_pair)

    def state_dict(self):
        return {}

class SD3ClipModel(torch.nn.Module):
    def __init__(self, clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5_attention_mask=False, device="cpu", dtype=None, model_options={}):
        super().__init__()
        self.dtypes = set()
        if clip_l:
            clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
            self.clip_l = clip_l_class(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, return_projected_pooled=False, model_options=model_options)
            self.dtypes.add(dtype)
        else:
            self.clip_l = None

        if clip_g:
            self.clip_g = sdxl_clip.SDXLClipG(device=device, dtype=dtype, model_options=model_options)
            self.dtypes.add(dtype)
        else:
            self.clip_g = None

        if t5:
            dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
            self.t5_attention_mask = t5_attention_mask
            self.t5xxl = T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options, attention_mask=self.t5_attention_mask)
            self.dtypes.add(dtype_t5)
        else:
            self.t5xxl = None

        logging.debug("Created SD3 text encoder with: clip_l {}, clip_g {}, t5xxl {}:{}".format(clip_l, clip_g, t5, dtype_t5))

    def set_clip_options(self, options):
        if self.clip_l is not None:
            self.clip_l.set_clip_options(options)
        if self.clip_g is not None:
            self.clip_g.set_clip_options(options)
        if self.t5xxl is not None:
            self.t5xxl.set_clip_options(options)

    def reset_clip_options(self):
        if self.clip_l is not None:
            self.clip_l.reset_clip_options()
        if self.clip_g is not None:
            self.clip_g.reset_clip_options()
        if self.t5xxl is not None:
            self.t5xxl.reset_clip_options()

    def encode_token_weights(self, token_weight_pairs):
        token_weight_pairs_l = token_weight_pairs["l"]
        token_weight_pairs_g = token_weight_pairs["g"]
        token_weight_pairs_t5 = token_weight_pairs["t5xxl"]
        lg_out = None
        pooled = None
        out = None
        extra = {}

        if len(token_weight_pairs_g) > 0 or len(token_weight_pairs_l) > 0:
            if self.clip_l is not None:
                lg_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
            else:
                l_pooled = torch.zeros((1, 768), device=comfy.model_management.intermediate_device())

            if self.clip_g is not None:
                g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
                if lg_out is not None:
                    cut_to = min(lg_out.shape[1], g_out.shape[1])
                    lg_out = torch.cat([lg_out[:,:cut_to], g_out[:,:cut_to]], dim=-1)
                else:
                    lg_out = torch.nn.functional.pad(g_out, (768, 0))
            else:
                g_out = None
                g_pooled = torch.zeros((1, 1280), device=comfy.model_management.intermediate_device())

            if lg_out is not None:
                lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
                out = lg_out
            pooled = torch.cat((l_pooled, g_pooled), dim=-1)

        if self.t5xxl is not None:
            t5_output = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
            t5_out, t5_pooled = t5_output[:2]
            if self.t5_attention_mask:
                extra["attention_mask"] = t5_output[2]["attention_mask"]

            if lg_out is not None:
                out = torch.cat([lg_out, t5_out], dim=-2)
            else:
                out = t5_out

        if out is None:
            out = torch.zeros((1, 77, 4096), device=comfy.model_management.intermediate_device())

        if pooled is None:
            pooled = torch.zeros((1, 768 + 1280), device=comfy.model_management.intermediate_device())

        return out, pooled, extra

    def load_sd(self, sd):
        if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
            return self.clip_g.load_sd(sd)
        elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
            return self.clip_l.load_sd(sd)
        else:
            return self.t5xxl.load_sd(sd)

def sd3_clip(clip_l=True, clip_g=True, t5=True, dtype_t5=None, t5xxl_scaled_fp8=None, t5_attention_mask=False):
    class SD3ClipModel_(SD3ClipModel):
        def __init__(self, device="cpu", dtype=None, model_options={}):
            if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
                model_options = model_options.copy()
                model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
            super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, dtype_t5=dtype_t5, t5_attention_mask=t5_attention_mask, device=device, dtype=dtype, model_options=model_options)
    return SD3ClipModel_