Spaces:
ginipick
/
Running on Zero

File size: 12,311 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import torch
import math
from comfy.ldm.modules.attention import optimized_attention_for_device
import comfy.ops

class T5LayerNorm(torch.nn.Module):
    def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None, operations=None):
        super().__init__()
        self.weight = torch.nn.Parameter(torch.empty(hidden_size, dtype=dtype, device=device))
        self.variance_epsilon = eps

    def forward(self, x):
        variance = x.pow(2).mean(-1, keepdim=True)
        x = x * torch.rsqrt(variance + self.variance_epsilon)
        return comfy.ops.cast_to_input(self.weight, x) * x

activations = {
    "gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"),
    "relu": torch.nn.functional.relu,
}

class T5DenseActDense(torch.nn.Module):
    def __init__(self, model_dim, ff_dim, ff_activation, dtype, device, operations):
        super().__init__()
        self.wi = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
        self.wo = operations.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device)
        # self.dropout = nn.Dropout(config.dropout_rate)
        self.act = activations[ff_activation]

    def forward(self, x):
        x = self.act(self.wi(x))
        # x = self.dropout(x)
        x = self.wo(x)
        return x

class T5DenseGatedActDense(torch.nn.Module):
    def __init__(self, model_dim, ff_dim, ff_activation, dtype, device, operations):
        super().__init__()
        self.wi_0 = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
        self.wi_1 = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
        self.wo = operations.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device)
        # self.dropout = nn.Dropout(config.dropout_rate)
        self.act = activations[ff_activation]

    def forward(self, x):
        hidden_gelu = self.act(self.wi_0(x))
        hidden_linear = self.wi_1(x)
        x = hidden_gelu * hidden_linear
        # x = self.dropout(x)
        x = self.wo(x)
        return x

class T5LayerFF(torch.nn.Module):
    def __init__(self, model_dim, ff_dim, ff_activation, gated_act, dtype, device, operations):
        super().__init__()
        if gated_act:
            self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, ff_activation, dtype, device, operations)
        else:
            self.DenseReluDense = T5DenseActDense(model_dim, ff_dim, ff_activation, dtype, device, operations)

        self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
        # self.dropout = nn.Dropout(config.dropout_rate)

    def forward(self, x):
        forwarded_states = self.layer_norm(x)
        forwarded_states = self.DenseReluDense(forwarded_states)
        # x = x + self.dropout(forwarded_states)
        x += forwarded_states
        return x

class T5Attention(torch.nn.Module):
    def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device, operations):
        super().__init__()

        # Mesh TensorFlow initialization to avoid scaling before softmax
        self.q = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.k = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.v = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
        self.o = operations.Linear(inner_dim, model_dim, bias=False, dtype=dtype, device=device)
        self.num_heads = num_heads

        self.relative_attention_bias = None
        if relative_attention_bias:
            self.relative_attention_num_buckets = 32
            self.relative_attention_max_distance = 128
            self.relative_attention_bias = operations.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device, dtype=dtype)

    @staticmethod
    def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
        """
        Adapted from Mesh Tensorflow:
        https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593

        Translate relative position to a bucket number for relative attention. The relative position is defined as
        memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
        position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
        small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
        positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
        This should allow for more graceful generalization to longer sequences than the model has been trained on

        Args:
            relative_position: an int32 Tensor
            bidirectional: a boolean - whether the attention is bidirectional
            num_buckets: an integer
            max_distance: an integer

        Returns:
            a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
        """
        relative_buckets = 0
        if bidirectional:
            num_buckets //= 2
            relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
            relative_position = torch.abs(relative_position)
        else:
            relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
        # now relative_position is in the range [0, inf)

        # half of the buckets are for exact increments in positions
        max_exact = num_buckets // 2
        is_small = relative_position < max_exact

        # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
        relative_position_if_large = max_exact + (
            torch.log(relative_position.float() / max_exact)
            / math.log(max_distance / max_exact)
            * (num_buckets - max_exact)
        ).to(torch.long)
        relative_position_if_large = torch.min(
            relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
        )

        relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
        return relative_buckets

    def compute_bias(self, query_length, key_length, device, dtype):
        """Compute binned relative position bias"""
        context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
        memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
        relative_position = memory_position - context_position  # shape (query_length, key_length)
        relative_position_bucket = self._relative_position_bucket(
            relative_position,  # shape (query_length, key_length)
            bidirectional=True,
            num_buckets=self.relative_attention_num_buckets,
            max_distance=self.relative_attention_max_distance,
        )
        values = self.relative_attention_bias(relative_position_bucket, out_dtype=dtype)  # shape (query_length, key_length, num_heads)
        values = values.permute([2, 0, 1]).unsqueeze(0)  # shape (1, num_heads, query_length, key_length)
        return values

    def forward(self, x, mask=None, past_bias=None, optimized_attention=None):
        q = self.q(x)
        k = self.k(x)
        v = self.v(x)
        if self.relative_attention_bias is not None:
            past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device, x.dtype)

        if past_bias is not None:
            if mask is not None:
                mask = mask + past_bias
            else:
                mask = past_bias

        out = optimized_attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask)
        return self.o(out), past_bias

class T5LayerSelfAttention(torch.nn.Module):
    def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device, operations):
        super().__init__()
        self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device, operations)
        self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
        # self.dropout = nn.Dropout(config.dropout_rate)

    def forward(self, x, mask=None, past_bias=None, optimized_attention=None):
        normed_hidden_states = self.layer_norm(x)
        output, past_bias = self.SelfAttention(self.layer_norm(x), mask=mask, past_bias=past_bias, optimized_attention=optimized_attention)
        # x = x + self.dropout(attention_output)
        x += output
        return x, past_bias

class T5Block(torch.nn.Module):
    def __init__(self, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention_bias, dtype, device, operations):
        super().__init__()
        self.layer = torch.nn.ModuleList()
        self.layer.append(T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device, operations))
        self.layer.append(T5LayerFF(model_dim, ff_dim, ff_activation, gated_act, dtype, device, operations))

    def forward(self, x, mask=None, past_bias=None, optimized_attention=None):
        x, past_bias = self.layer[0](x, mask, past_bias, optimized_attention)
        x = self.layer[-1](x)
        return x, past_bias

class T5Stack(torch.nn.Module):
    def __init__(self, num_layers, model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention, dtype, device, operations):
        super().__init__()

        self.block = torch.nn.ModuleList(
            [T5Block(model_dim, inner_dim, ff_dim, ff_activation, gated_act, num_heads, relative_attention_bias=((not relative_attention) or (i == 0)), dtype=dtype, device=device, operations=operations) for i in range(num_layers)]
        )
        self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
        # self.dropout = nn.Dropout(config.dropout_rate)

    def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
        mask = None
        if attention_mask is not None:
            mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
            mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))

        intermediate = None
        optimized_attention = optimized_attention_for_device(x.device, mask=attention_mask is not None, small_input=True)
        past_bias = None
        for i, l in enumerate(self.block):
            x, past_bias = l(x, mask, past_bias, optimized_attention)
            if i == intermediate_output:
                intermediate = x.clone()
        x = self.final_layer_norm(x)
        if intermediate is not None and final_layer_norm_intermediate:
            intermediate = self.final_layer_norm(intermediate)
        return x, intermediate

class T5(torch.nn.Module):
    def __init__(self, config_dict, dtype, device, operations):
        super().__init__()
        self.num_layers = config_dict["num_layers"]
        model_dim = config_dict["d_model"]

        self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["is_gated_act"], config_dict["num_heads"], config_dict["model_type"] != "umt5", dtype, device, operations)
        self.dtype = dtype
        self.shared = operations.Embedding(config_dict["vocab_size"], model_dim, device=device, dtype=dtype)

    def get_input_embeddings(self):
        return self.shared

    def set_input_embeddings(self, embeddings):
        self.shared = embeddings

    def forward(self, input_ids, *args, **kwargs):
        x = self.shared(input_ids, out_dtype=kwargs.get("dtype", torch.float32))
        if self.dtype not in [torch.float32, torch.float16, torch.bfloat16]:
            x = torch.nan_to_num(x) #Fix for fp8 T5 base
        return self.encoder(x, *args, **kwargs)