Spaces:
ginipick
/
Running on Zero

File size: 5,594 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

def attention_multiply(attn, model, q, k, v, out):
    m = model.clone()
    sd = model.model_state_dict()

    for key in sd:
        if key.endswith("{}.to_q.bias".format(attn)) or key.endswith("{}.to_q.weight".format(attn)):
            m.add_patches({key: (None,)}, 0.0, q)
        if key.endswith("{}.to_k.bias".format(attn)) or key.endswith("{}.to_k.weight".format(attn)):
            m.add_patches({key: (None,)}, 0.0, k)
        if key.endswith("{}.to_v.bias".format(attn)) or key.endswith("{}.to_v.weight".format(attn)):
            m.add_patches({key: (None,)}, 0.0, v)
        if key.endswith("{}.to_out.0.bias".format(attn)) or key.endswith("{}.to_out.0.weight".format(attn)):
            m.add_patches({key: (None,)}, 0.0, out)

    return m


class UNetSelfAttentionMultiply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing/attention_experiments"

    def patch(self, model, q, k, v, out):
        m = attention_multiply("attn1", model, q, k, v, out)
        return (m, )

class UNetCrossAttentionMultiply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing/attention_experiments"

    def patch(self, model, q, k, v, out):
        m = attention_multiply("attn2", model, q, k, v, out)
        return (m, )

class CLIPAttentionMultiply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP",),
                              "q": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "k": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "v": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "out": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing/attention_experiments"

    def patch(self, clip, q, k, v, out):
        m = clip.clone()
        sd = m.patcher.model_state_dict()

        for key in sd:
            if key.endswith("self_attn.q_proj.weight") or key.endswith("self_attn.q_proj.bias"):
                m.add_patches({key: (None,)}, 0.0, q)
            if key.endswith("self_attn.k_proj.weight") or key.endswith("self_attn.k_proj.bias"):
                m.add_patches({key: (None,)}, 0.0, k)
            if key.endswith("self_attn.v_proj.weight") or key.endswith("self_attn.v_proj.bias"):
                m.add_patches({key: (None,)}, 0.0, v)
            if key.endswith("self_attn.out_proj.weight") or key.endswith("self_attn.out_proj.bias"):
                m.add_patches({key: (None,)}, 0.0, out)
        return (m, )

class UNetTemporalAttentionMultiply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "self_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "self_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "cross_structural": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              "cross_temporal": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing/attention_experiments"

    def patch(self, model, self_structural, self_temporal, cross_structural, cross_temporal):
        m = model.clone()
        sd = model.model_state_dict()

        for k in sd:
            if (k.endswith("attn1.to_out.0.bias") or k.endswith("attn1.to_out.0.weight")):
                if '.time_stack.' in k:
                    m.add_patches({k: (None,)}, 0.0, self_temporal)
                else:
                    m.add_patches({k: (None,)}, 0.0, self_structural)
            elif (k.endswith("attn2.to_out.0.bias") or k.endswith("attn2.to_out.0.weight")):
                if '.time_stack.' in k:
                    m.add_patches({k: (None,)}, 0.0, cross_temporal)
                else:
                    m.add_patches({k: (None,)}, 0.0, cross_structural)
        return (m, )

NODE_CLASS_MAPPINGS = {
    "UNetSelfAttentionMultiply": UNetSelfAttentionMultiply,
    "UNetCrossAttentionMultiply": UNetCrossAttentionMultiply,
    "CLIPAttentionMultiply": CLIPAttentionMultiply,
    "UNetTemporalAttentionMultiply": UNetTemporalAttentionMultiply,
}