Spaces:
ginipick
/
Running on Zero

File size: 50,916 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
import torch
import torch.nn.functional as F
from torchvision.transforms import functional as TF
from PIL import Image, ImageDraw, ImageFilter, ImageFont
import scipy.ndimage
import numpy as np
from contextlib import nullcontext
import os

import model_management
from comfy.utils import ProgressBar
from comfy.utils import common_upscale
from nodes import MAX_RESOLUTION

import folder_paths

from ..utility.utility import tensor2pil, pil2tensor

script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

class BatchCLIPSeg:

    def __init__(self):
        pass
    
    @classmethod
    def INPUT_TYPES(s):
       
        return {"required":
                    {
                        "images": ("IMAGE",),
                        "text": ("STRING", {"multiline": False}),
                        "threshold": ("FLOAT", {"default": 0.5,"min": 0.0, "max": 10.0, "step": 0.001}),
                        "binary_mask": ("BOOLEAN", {"default": True}),
                        "combine_mask": ("BOOLEAN", {"default": False}),
                        "use_cuda": ("BOOLEAN", {"default": True}),
                     },
                     "optional":
                    {
                        "blur_sigma": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step": 0.1}),
                        "opt_model": ("CLIPSEGMODEL", ),
                        "prev_mask": ("MASK", {"default": None}),
                        "image_bg_level": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
                        "invert": ("BOOLEAN", {"default": False}),
                    }
                }

    CATEGORY = "KJNodes/masking"
    RETURN_TYPES = ("MASK", "IMAGE", )
    RETURN_NAMES = ("Mask", "Image", )
    FUNCTION = "segment_image"
    DESCRIPTION = """
Segments an image or batch of images using CLIPSeg.
"""

    def segment_image(self, images, text, threshold, binary_mask, combine_mask, use_cuda, blur_sigma=0.0, opt_model=None, prev_mask=None, invert= False, image_bg_level=0.5):
        from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
        import torchvision.transforms as transforms
        offload_device = model_management.unet_offload_device()
        device = model_management.get_torch_device()
        if not use_cuda:
            device = torch.device("cpu")
        dtype = model_management.unet_dtype()

        if opt_model is None:
            checkpoint_path = os.path.join(folder_paths.models_dir,'clip_seg', 'clipseg-rd64-refined-fp16')
            if not hasattr(self, "model"):
                try:
                    if not os.path.exists(checkpoint_path):
                        from huggingface_hub import snapshot_download
                        snapshot_download(repo_id="Kijai/clipseg-rd64-refined-fp16", local_dir=checkpoint_path, local_dir_use_symlinks=False)
                    self.model = CLIPSegForImageSegmentation.from_pretrained(checkpoint_path)
                except:
                    checkpoint_path = "CIDAS/clipseg-rd64-refined"
                    self.model = CLIPSegForImageSegmentation.from_pretrained(checkpoint_path)
            processor = CLIPSegProcessor.from_pretrained(checkpoint_path)

        else:
            self.model = opt_model['model']
            processor = opt_model['processor']

        self.model.to(dtype).to(device)

        B, H, W, C = images.shape
        images = images.to(device)
        
        autocast_condition = (dtype != torch.float32) and not model_management.is_device_mps(device)
        with torch.autocast(model_management.get_autocast_device(device), dtype=dtype) if autocast_condition else nullcontext():

            PIL_images = [Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) for image in images ]
            prompt = [text] * len(images)
            input_prc = processor(text=prompt, images=PIL_images, return_tensors="pt")

            for key in input_prc:
                input_prc[key] = input_prc[key].to(device)
            outputs = self.model(**input_prc)

        mask_tensor = torch.sigmoid(outputs.logits)
        mask_tensor = (mask_tensor - mask_tensor.min()) / (mask_tensor.max() - mask_tensor.min())
        mask_tensor = torch.where(mask_tensor > (threshold), mask_tensor, torch.tensor(0, dtype=torch.float))
        print(mask_tensor.shape)
        if len(mask_tensor.shape) == 2:
            mask_tensor = mask_tensor.unsqueeze(0)
        mask_tensor = F.interpolate(mask_tensor.unsqueeze(1), size=(H, W), mode='nearest')
        mask_tensor = mask_tensor.squeeze(1)

        self.model.to(offload_device)
        
        if binary_mask:
            mask_tensor = (mask_tensor > 0).float()
        if blur_sigma > 0:
            kernel_size = int(6 * int(blur_sigma) + 1) 
            blur = transforms.GaussianBlur(kernel_size=(kernel_size, kernel_size), sigma=(blur_sigma, blur_sigma))
            mask_tensor = blur(mask_tensor)

        if combine_mask:
            mask_tensor = torch.max(mask_tensor, dim=0)[0]
            mask_tensor = mask_tensor.unsqueeze(0).repeat(len(images),1,1)

        del outputs
        model_management.soft_empty_cache()

        if prev_mask is not None:
            if prev_mask.shape != mask_tensor.shape:
                prev_mask = F.interpolate(prev_mask.unsqueeze(1), size=(H, W), mode='nearest')
            mask_tensor = mask_tensor + prev_mask.to(device)
            torch.clamp(mask_tensor, min=0.0, max=1.0)

        if invert:
            mask_tensor = 1 - mask_tensor

        image_tensor = images * mask_tensor.unsqueeze(-1) + (1 - mask_tensor.unsqueeze(-1)) * image_bg_level
        image_tensor = torch.clamp(image_tensor, min=0.0, max=1.0).cpu().float()

        mask_tensor = mask_tensor.cpu().float()
    
        return mask_tensor, image_tensor, 

class DownloadAndLoadCLIPSeg:

    def __init__(self):
        pass
    
    @classmethod
    def INPUT_TYPES(s):
       
        return {"required":
                    {     
                    "model": (
                    [   'Kijai/clipseg-rd64-refined-fp16',
                        'CIDAS/clipseg-rd64-refined',
                    ],
                    ),
                     },
                }

    CATEGORY = "KJNodes/masking"
    RETURN_TYPES = ("CLIPSEGMODEL",)
    RETURN_NAMES = ("clipseg_model",)
    FUNCTION = "segment_image"
    DESCRIPTION = """
Downloads and loads CLIPSeg model with huggingface_hub,  
to ComfyUI/models/clip_seg
"""

    def segment_image(self, model):
        from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
        checkpoint_path = os.path.join(folder_paths.models_dir,'clip_seg', os.path.basename(model))
        if not hasattr(self, "model"):
            if not os.path.exists(checkpoint_path):
                from huggingface_hub import snapshot_download
                snapshot_download(repo_id=model, local_dir=checkpoint_path, local_dir_use_symlinks=False)
            self.model = CLIPSegForImageSegmentation.from_pretrained(checkpoint_path)

        processor = CLIPSegProcessor.from_pretrained(checkpoint_path)

        clipseg_model = {}
        clipseg_model['model'] = self.model
        clipseg_model['processor'] = processor

        return clipseg_model,

class CreateTextMask:

    RETURN_TYPES = ("IMAGE", "MASK",)
    FUNCTION = "createtextmask"
    CATEGORY = "KJNodes/text"
    DESCRIPTION = """
Creates a text image and mask.  
Looks for fonts from this folder:  
ComfyUI/custom_nodes/ComfyUI-KJNodes/fonts
  
If start_rotation and/or end_rotation are different values,  
creates animation between them.
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "invert": ("BOOLEAN", {"default": False}),
                 "frames": ("INT", {"default": 1,"min": 1, "max": 4096, "step": 1}),
                 "text_x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
                 "text_y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
                 "font_size": ("INT", {"default": 32,"min": 8, "max": 4096, "step": 1}),
                 "font_color": ("STRING", {"default": "white"}),
                 "text": ("STRING", {"default": "HELLO!", "multiline": True}),
                 "font": (folder_paths.get_filename_list("kjnodes_fonts"), ),
                 "width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                 "height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                 "start_rotation": ("INT", {"default": 0,"min": 0, "max": 359, "step": 1}),
                 "end_rotation": ("INT", {"default": 0,"min": -359, "max": 359, "step": 1}),
        },
    } 

    def createtextmask(self, frames, width, height, invert, text_x, text_y, text, font_size, font_color, font, start_rotation, end_rotation):
    # Define the number of images in the batch
        batch_size = frames
        out = []
        masks = []
        rotation = start_rotation
        if start_rotation != end_rotation:
            rotation_increment = (end_rotation - start_rotation) / (batch_size - 1)

        font_path = folder_paths.get_full_path("kjnodes_fonts", font)
        # Generate the text
        for i in range(batch_size):
            image = Image.new("RGB", (width, height), "black")
            draw = ImageDraw.Draw(image)
            font = ImageFont.truetype(font_path, font_size)
            
            # Split the text into words
            words = text.split()
            
            # Initialize variables for line creation
            lines = []
            current_line = []
            current_line_width = 0
            try: #new pillow  
                # Iterate through words to create lines
                for word in words:
                    word_width = font.getbbox(word)[2]
                    if current_line_width + word_width <= width - 2 * text_x:
                        current_line.append(word)
                        current_line_width += word_width + font.getbbox(" ")[2] # Add space width
                    else:
                        lines.append(" ".join(current_line))
                        current_line = [word]
                        current_line_width = word_width
            except: #old pillow             
                for word in words:
                    word_width = font.getsize(word)[0]
                    if current_line_width + word_width <= width - 2 * text_x:
                        current_line.append(word)
                        current_line_width += word_width + font.getsize(" ")[0] # Add space width
                    else:
                        lines.append(" ".join(current_line))
                        current_line = [word]
                        current_line_width = word_width
            
            # Add the last line if it's not empty
            if current_line:
                lines.append(" ".join(current_line))
            
            # Draw each line of text separately
            y_offset = text_y
            for line in lines:
                text_width = font.getlength(line)
                text_height = font_size
                text_center_x = text_x + text_width / 2
                text_center_y = y_offset + text_height / 2
                try:
                    draw.text((text_x, y_offset), line, font=font, fill=font_color, features=['-liga'])
                except:
                    draw.text((text_x, y_offset), line, font=font, fill=font_color)
                y_offset += text_height # Move to the next line
            
            if start_rotation != end_rotation:
                image = image.rotate(rotation, center=(text_center_x, text_center_y))
                rotation += rotation_increment
            
            image = np.array(image).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]
            mask = image[:, :, :, 0] 
            masks.append(mask)
            out.append(image)
            
        if invert:
            return (1.0 - torch.cat(out, dim=0), 1.0 - torch.cat(masks, dim=0),)
        return (torch.cat(out, dim=0),torch.cat(masks, dim=0),)

class ColorToMask:
    
    RETURN_TYPES = ("MASK",)
    FUNCTION = "clip"
    CATEGORY = "KJNodes/masking"
    DESCRIPTION = """
Converts chosen RGB value to a mask.  
With batch inputs, the **per_batch**  
controls the number of images processed at once.
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "images": ("IMAGE",),
                 "invert": ("BOOLEAN", {"default": False}),
                 "red": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
                 "green": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
                 "blue": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
                 "threshold": ("INT", {"default": 10,"min": 0, "max": 255, "step": 1}),
                 "per_batch": ("INT", {"default": 16, "min": 1, "max": 4096, "step": 1}),
        },
    } 

    def clip(self, images, red, green, blue, threshold, invert, per_batch):

        color = torch.tensor([red, green, blue], dtype=torch.uint8)  
        black = torch.tensor([0, 0, 0], dtype=torch.uint8)
        white = torch.tensor([255, 255, 255], dtype=torch.uint8)
        
        if invert:
            black, white = white, black

        steps = images.shape[0]
        pbar = ProgressBar(steps)
        tensors_out = []
        
        for start_idx in range(0, images.shape[0], per_batch):

            # Calculate color distances
            color_distances = torch.norm(images[start_idx:start_idx+per_batch] * 255 - color, dim=-1)
            
            # Create a mask based on the threshold
            mask = color_distances <= threshold
            
            # Apply the mask to create new images
            mask_out = torch.where(mask.unsqueeze(-1), white, black).float()
            mask_out = mask_out.mean(dim=-1)

            tensors_out.append(mask_out.cpu())
            batch_count = mask_out.shape[0]
            pbar.update(batch_count)
       
        tensors_out = torch.cat(tensors_out, dim=0)
        tensors_out = torch.clamp(tensors_out, min=0.0, max=1.0)
        return tensors_out,
      
class CreateFluidMask:
    
    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "createfluidmask"
    CATEGORY = "KJNodes/masking/generate"

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "invert": ("BOOLEAN", {"default": False}),
                 "frames": ("INT", {"default": 1,"min": 1, "max": 4096, "step": 1}),
                 "width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
                 "height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
                 "inflow_count": ("INT", {"default": 3,"min": 0, "max": 255, "step": 1}),
                 "inflow_velocity": ("INT", {"default": 1,"min": 0, "max": 255, "step": 1}),
                 "inflow_radius": ("INT", {"default": 8,"min": 0, "max": 255, "step": 1}),
                 "inflow_padding": ("INT", {"default": 50,"min": 0, "max": 255, "step": 1}),
                 "inflow_duration": ("INT", {"default": 60,"min": 0, "max": 255, "step": 1}),
        },
    } 
    #using code from https://github.com/GregTJ/stable-fluids
    def createfluidmask(self, frames, width, height, invert, inflow_count, inflow_velocity, inflow_radius, inflow_padding, inflow_duration):
        from ..utility.fluid import Fluid
        try:
            from scipy.special import erf
        except:
            from scipy.spatial import erf
        out = []
        masks = []
        RESOLUTION = width, height
        DURATION = frames

        INFLOW_PADDING = inflow_padding
        INFLOW_DURATION = inflow_duration
        INFLOW_RADIUS = inflow_radius
        INFLOW_VELOCITY = inflow_velocity
        INFLOW_COUNT = inflow_count

        print('Generating fluid solver, this may take some time.')
        fluid = Fluid(RESOLUTION, 'dye')

        center = np.floor_divide(RESOLUTION, 2)
        r = np.min(center) - INFLOW_PADDING

        points = np.linspace(-np.pi, np.pi, INFLOW_COUNT, endpoint=False)
        points = tuple(np.array((np.cos(p), np.sin(p))) for p in points)
        normals = tuple(-p for p in points)
        points = tuple(r * p + center for p in points)

        inflow_velocity = np.zeros_like(fluid.velocity)
        inflow_dye = np.zeros(fluid.shape)
        for p, n in zip(points, normals):
            mask = np.linalg.norm(fluid.indices - p[:, None, None], axis=0) <= INFLOW_RADIUS
            inflow_velocity[:, mask] += n[:, None] * INFLOW_VELOCITY
            inflow_dye[mask] = 1

        
        for f in range(DURATION):
            print(f'Computing frame {f + 1} of {DURATION}.')
            if f <= INFLOW_DURATION:
                fluid.velocity += inflow_velocity
                fluid.dye += inflow_dye

            curl = fluid.step()[1]
            # Using the error function to make the contrast a bit higher. 
            # Any other sigmoid function e.g. smoothstep would work.
            curl = (erf(curl * 2) + 1) / 4

            color = np.dstack((curl, np.ones(fluid.shape), fluid.dye))
            color = (np.clip(color, 0, 1) * 255).astype('uint8')
            image = np.array(color).astype(np.float32) / 255.0
            image = torch.from_numpy(image)[None,]
            mask = image[:, :, :, 0] 
            masks.append(mask)
            out.append(image)
        
        if invert:
            return (1.0 - torch.cat(out, dim=0),1.0 - torch.cat(masks, dim=0),)
        return (torch.cat(out, dim=0),torch.cat(masks, dim=0),)

class CreateAudioMask:
       
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "createaudiomask"
    CATEGORY = "KJNodes/deprecated"

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "invert": ("BOOLEAN", {"default": False}),
                 "frames": ("INT", {"default": 16,"min": 1, "max": 255, "step": 1}),
                 "scale": ("FLOAT", {"default": 0.5,"min": 0.0, "max": 2.0, "step": 0.01}),
                 "audio_path": ("STRING", {"default": "audio.wav"}),
                 "width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
                 "height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
        },
    } 

    def createaudiomask(self, frames, width, height, invert, audio_path, scale):
        try:
            import librosa
        except ImportError:
            raise Exception("Can not import librosa. Install it with 'pip install librosa'")
        batch_size = frames
        out = []
        masks = []
        if audio_path == "audio.wav": #I don't know why relative path won't work otherwise...
            audio_path = os.path.join(script_directory, audio_path)
        audio, sr = librosa.load(audio_path)
        spectrogram = np.abs(librosa.stft(audio))
        
        for i in range(batch_size):
           image = Image.new("RGB", (width, height), "black")
           draw = ImageDraw.Draw(image)
           frame = spectrogram[:, i]
           circle_radius = int(height * np.mean(frame))
           circle_radius *= scale
           circle_center = (width // 2, height // 2)  # Calculate the center of the image

           draw.ellipse([(circle_center[0] - circle_radius, circle_center[1] - circle_radius),
                      (circle_center[0] + circle_radius, circle_center[1] + circle_radius)],
                      fill='white')
             
           image = np.array(image).astype(np.float32) / 255.0
           image = torch.from_numpy(image)[None,]
           mask = image[:, :, :, 0] 
           masks.append(mask)
           out.append(image)

        if invert:
            return (1.0 - torch.cat(out, dim=0),)
        return (torch.cat(out, dim=0),torch.cat(masks, dim=0),)
       
class CreateGradientMask:
    
    RETURN_TYPES = ("MASK",)
    FUNCTION = "createmask"
    CATEGORY = "KJNodes/masking/generate"

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "invert": ("BOOLEAN", {"default": False}),
                 "frames": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
                 "width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
                 "height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
        },
    } 
    def createmask(self, frames, width, height, invert):
        # Define the number of images in the batch
        batch_size = frames
        out = []
        # Create an empty array to store the image batch
        image_batch = np.zeros((batch_size, height, width), dtype=np.float32)
        # Generate the black to white gradient for each image
        for i in range(batch_size):
            gradient = np.linspace(1.0, 0.0, width, dtype=np.float32)
            time = i / frames  # Calculate the time variable
            offset_gradient = gradient - time  # Offset the gradient values based on time
            image_batch[i] = offset_gradient.reshape(1, -1)
        output = torch.from_numpy(image_batch)
        mask = output
        out.append(mask)
        if invert:
            return (1.0 - torch.cat(out, dim=0),)
        return (torch.cat(out, dim=0),)

class CreateFadeMask:
    
    RETURN_TYPES = ("MASK",)
    FUNCTION = "createfademask"
    CATEGORY = "KJNodes/deprecated"

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "invert": ("BOOLEAN", {"default": False}),
                 "frames": ("INT", {"default": 2,"min": 2, "max": 10000, "step": 1}),
                 "width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
                 "height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
                 "interpolation": (["linear", "ease_in", "ease_out", "ease_in_out"],),
                 "start_level": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 1.0, "step": 0.01}),
                 "midpoint_level": ("FLOAT", {"default": 0.5,"min": 0.0, "max": 1.0, "step": 0.01}),
                 "end_level": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 1.0, "step": 0.01}),
                 "midpoint_frame": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
        },
    } 
    
    def createfademask(self, frames, width, height, invert, interpolation, start_level, midpoint_level, end_level, midpoint_frame):
        def ease_in(t):
            return t * t

        def ease_out(t):
            return 1 - (1 - t) * (1 - t)

        def ease_in_out(t):
            return 3 * t * t - 2 * t * t * t

        batch_size = frames
        out = []
        image_batch = np.zeros((batch_size, height, width), dtype=np.float32)

        if midpoint_frame == 0:
            midpoint_frame = batch_size // 2

        for i in range(batch_size):
            if i <= midpoint_frame:
                t = i / midpoint_frame
                if interpolation == "ease_in":
                    t = ease_in(t)
                elif interpolation == "ease_out":
                    t = ease_out(t)
                elif interpolation == "ease_in_out":
                    t = ease_in_out(t)
                color = start_level - t * (start_level - midpoint_level)
            else:
                t = (i - midpoint_frame) / (batch_size - midpoint_frame)
                if interpolation == "ease_in":
                    t = ease_in(t)
                elif interpolation == "ease_out":
                    t = ease_out(t)
                elif interpolation == "ease_in_out":
                    t = ease_in_out(t)
                color = midpoint_level - t * (midpoint_level - end_level)

            color = np.clip(color, 0, 255)
            image = np.full((height, width), color, dtype=np.float32)
            image_batch[i] = image

        output = torch.from_numpy(image_batch)
        mask = output
        out.append(mask)

        if invert:
            return (1.0 - torch.cat(out, dim=0),)
        return (torch.cat(out, dim=0),)

class CreateFadeMaskAdvanced:
    
    RETURN_TYPES = ("MASK",)
    FUNCTION = "createfademask"
    CATEGORY = "KJNodes/masking/generate"
    DESCRIPTION = """
Create a batch of masks interpolated between given frames and values. 
Uses same syntax as Fizz' BatchValueSchedule.
First value is the frame index (not that this starts from 0, not 1) 
and the second value inside the brackets is the float value of the mask in range 0.0 - 1.0  

For example the default values:  
0:(0.0)  
7:(1.0)  
15:(0.0)  
  
Would create a mask batch fo 16 frames, starting from black, 
interpolating with the chosen curve to fully white at the 8th frame, 
and interpolating from that to fully black at the 16th frame.
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "points_string": ("STRING", {"default": "0:(0.0),\n7:(1.0),\n15:(0.0)\n", "multiline": True}),
                 "invert": ("BOOLEAN", {"default": False}),
                 "frames": ("INT", {"default": 16,"min": 2, "max": 10000, "step": 1}),
                 "width": ("INT", {"default": 512,"min": 1, "max": 4096, "step": 1}),
                 "height": ("INT", {"default": 512,"min": 1, "max": 4096, "step": 1}),
                 "interpolation": (["linear", "ease_in", "ease_out", "ease_in_out"],),
        },
    } 
    
    def createfademask(self, frames, width, height, invert, points_string, interpolation):
        def ease_in(t):
            return t * t
        
        def ease_out(t):
            return 1 - (1 - t) * (1 - t)

        def ease_in_out(t):
            return 3 * t * t - 2 * t * t * t
        
        # Parse the input string into a list of tuples
        points = []
        points_string = points_string.rstrip(',\n')
        for point_str in points_string.split(','):
            frame_str, color_str = point_str.split(':')
            frame = int(frame_str.strip())
            color = float(color_str.strip()[1:-1])  # Remove parentheses around color
            points.append((frame, color))

        # Check if the last frame is already in the points
        if len(points) == 0 or points[-1][0] != frames - 1:
            # If not, add it with the color of the last specified frame
            points.append((frames - 1, points[-1][1] if points else 0))

        # Sort the points by frame number
        points.sort(key=lambda x: x[0])

        batch_size = frames
        out = []
        image_batch = np.zeros((batch_size, height, width), dtype=np.float32)

        # Index of the next point to interpolate towards
        next_point = 1

        for i in range(batch_size):
            while next_point < len(points) and i > points[next_point][0]:
                next_point += 1

            # Interpolate between the previous point and the next point
            prev_point = next_point - 1
            t = (i - points[prev_point][0]) / (points[next_point][0] - points[prev_point][0])
            if interpolation == "ease_in":
                t = ease_in(t)
            elif interpolation == "ease_out":
                t = ease_out(t)
            elif interpolation == "ease_in_out":
                t = ease_in_out(t)
            elif interpolation == "linear":
                pass  # No need to modify `t` for linear interpolation

            color = points[prev_point][1] - t * (points[prev_point][1] - points[next_point][1])
            color = np.clip(color, 0, 255)
            image = np.full((height, width), color, dtype=np.float32)
            image_batch[i] = image

        output = torch.from_numpy(image_batch)
        mask = output
        out.append(mask)

        if invert:
            return (1.0 - torch.cat(out, dim=0),)
        return (torch.cat(out, dim=0),)

class CreateMagicMask:
    
    RETURN_TYPES = ("MASK", "MASK",)
    RETURN_NAMES = ("mask", "mask_inverted",)
    FUNCTION = "createmagicmask"
    CATEGORY = "KJNodes/masking/generate"

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "frames": ("INT", {"default": 16,"min": 2, "max": 4096, "step": 1}),
                 "depth": ("INT", {"default": 12,"min": 1, "max": 500, "step": 1}),
                 "distortion": ("FLOAT", {"default": 1.5,"min": 0.0, "max": 100.0, "step": 0.01}),
                 "seed": ("INT", {"default": 123,"min": 0, "max": 99999999, "step": 1}),
                 "transitions": ("INT", {"default": 1,"min": 1, "max": 20, "step": 1}),
                 "frame_width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                 "frame_height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
        },
    } 

    def createmagicmask(self, frames, transitions, depth, distortion, seed, frame_width, frame_height):
        from ..utility.magictex import coordinate_grid, random_transform, magic
        import matplotlib.pyplot as plt
        rng = np.random.default_rng(seed)
        out = []
        coords = coordinate_grid((frame_width, frame_height))

        # Calculate the number of frames for each transition
        frames_per_transition = frames // transitions

        # Generate a base set of parameters
        base_params = {
            "coords": random_transform(coords, rng),
            "depth": depth,
            "distortion": distortion,
        }
        for t in range(transitions):
        # Generate a second set of parameters that is at most max_diff away from the base parameters
            params1 = base_params.copy()
            params2 = base_params.copy()

            params1['coords'] = random_transform(coords, rng)
            params2['coords'] = random_transform(coords, rng)

            for i in range(frames_per_transition):
                # Compute the interpolation factor
                alpha = i / frames_per_transition

                # Interpolate between the two sets of parameters
                params = params1.copy()
                params['coords'] = (1 - alpha) * params1['coords'] + alpha * params2['coords']

                tex = magic(**params)

                dpi = frame_width / 10
                fig = plt.figure(figsize=(10, 10), dpi=dpi)

                ax = fig.add_subplot(111)
                plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
                
                ax.get_yaxis().set_ticks([])
                ax.get_xaxis().set_ticks([])
                ax.imshow(tex, aspect='auto')
                
                fig.canvas.draw()
                img = np.array(fig.canvas.renderer._renderer)
                
                plt.close(fig)
                
                pil_img = Image.fromarray(img).convert("L")
                mask = torch.tensor(np.array(pil_img)) / 255.0
                
                out.append(mask)
        
        return (torch.stack(out, dim=0), 1.0 - torch.stack(out, dim=0),)
        
class CreateShapeMask:
    
    RETURN_TYPES = ("MASK", "MASK",)
    RETURN_NAMES = ("mask", "mask_inverted",)
    FUNCTION = "createshapemask"
    CATEGORY = "KJNodes/masking/generate"
    DESCRIPTION = """
Creates a mask or batch of masks with the specified shape.  
Locations are center locations.  
Grow value is the amount to grow the shape on each frame, creating animated masks.
"""

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "shape": (
            [   'circle',
                'square',
                'triangle',
            ],
            {
            "default": 'circle'
             }),
                "frames": ("INT", {"default": 1,"min": 1, "max": 4096, "step": 1}),
                "location_x": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
                "location_y": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
                "grow": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
                "frame_width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                "frame_height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                "shape_width": ("INT", {"default": 128,"min": 8, "max": 4096, "step": 1}),
                "shape_height": ("INT", {"default": 128,"min": 8, "max": 4096, "step": 1}),
        },
    } 

    def createshapemask(self, frames, frame_width, frame_height, location_x, location_y, shape_width, shape_height, grow, shape):
        # Define the number of images in the batch
        batch_size = frames
        out = []
        color = "white"
        for i in range(batch_size):
            image = Image.new("RGB", (frame_width, frame_height), "black")
            draw = ImageDraw.Draw(image)

            # Calculate the size for this frame and ensure it's not less than 0
            current_width = max(0, shape_width + i*grow)
            current_height = max(0, shape_height + i*grow)

            if shape == 'circle' or shape == 'square':
                # Define the bounding box for the shape
                left_up_point = (location_x - current_width // 2, location_y - current_height // 2)
                right_down_point = (location_x + current_width // 2, location_y + current_height // 2)
                two_points = [left_up_point, right_down_point]

                if shape == 'circle':
                    draw.ellipse(two_points, fill=color)
                elif shape == 'square':
                    draw.rectangle(two_points, fill=color)
                    
            elif shape == 'triangle':
                # Define the points for the triangle
                left_up_point = (location_x - current_width // 2, location_y + current_height // 2) # bottom left
                right_down_point = (location_x + current_width // 2, location_y + current_height // 2) # bottom right
                top_point = (location_x, location_y - current_height // 2) # top point
                draw.polygon([top_point, left_up_point, right_down_point], fill=color)

            image = pil2tensor(image)
            mask = image[:, :, :, 0]
            out.append(mask)
        outstack = torch.cat(out, dim=0)
        return (outstack, 1.0 - outstack,)
    
class CreateVoronoiMask:
    
    RETURN_TYPES = ("MASK", "MASK",)
    RETURN_NAMES = ("mask", "mask_inverted",)
    FUNCTION = "createvoronoi"
    CATEGORY = "KJNodes/masking/generate"

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                 "frames": ("INT", {"default": 16,"min": 2, "max": 4096, "step": 1}),
                 "num_points": ("INT", {"default": 15,"min": 1, "max": 4096, "step": 1}),
                 "line_width": ("INT", {"default": 4,"min": 1, "max": 4096, "step": 1}),
                 "speed": ("FLOAT", {"default": 0.5,"min": 0.0, "max": 1.0, "step": 0.01}),
                 "frame_width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
                 "frame_height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
        },
    } 

    def createvoronoi(self, frames, num_points, line_width, speed, frame_width, frame_height):
        from scipy.spatial import Voronoi
        # Define the number of images in the batch
        batch_size = frames
        out = []
          
        # Calculate aspect ratio
        aspect_ratio = frame_width / frame_height
        
        # Create start and end points for each point, considering the aspect ratio
        start_points = np.random.rand(num_points, 2)
        start_points[:, 0] *= aspect_ratio
        
        end_points = np.random.rand(num_points, 2)
        end_points[:, 0] *= aspect_ratio

        for i in range(batch_size):
            # Interpolate the points' positions based on the current frame
            t = (i * speed) / (batch_size - 1)  # normalize to [0, 1] over the frames
            t = np.clip(t, 0, 1)  # ensure t is in [0, 1]
            points = (1 - t) * start_points + t * end_points  # lerp

            # Adjust points for aspect ratio
            points[:, 0] *= aspect_ratio

            vor = Voronoi(points)

            # Create a blank image with a white background
            fig, ax = plt.subplots()
            plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
            ax.set_xlim([0, aspect_ratio]); ax.set_ylim([0, 1])  # adjust x limits
            ax.axis('off')
            ax.margins(0, 0)
            fig.set_size_inches(aspect_ratio * frame_height/100, frame_height/100)  # adjust figure size
            ax.fill_between([0, 1], [0, 1], color='white')

            # Plot each Voronoi ridge
            for simplex in vor.ridge_vertices:
                simplex = np.asarray(simplex)
                if np.all(simplex >= 0):
                    plt.plot(vor.vertices[simplex, 0], vor.vertices[simplex, 1], 'k-', linewidth=line_width)

            fig.canvas.draw()
            img = np.array(fig.canvas.renderer._renderer)

            plt.close(fig)

            pil_img = Image.fromarray(img).convert("L")
            mask = torch.tensor(np.array(pil_img)) / 255.0

            out.append(mask)

        return (torch.stack(out, dim=0), 1.0 - torch.stack(out, dim=0),)
    
class GetMaskSizeAndCount:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "mask": ("MASK",),
        }}

    RETURN_TYPES = ("MASK","INT", "INT", "INT",)
    RETURN_NAMES = ("mask", "width", "height", "count",)
    FUNCTION = "getsize"
    CATEGORY = "KJNodes/masking"
    DESCRIPTION = """
Returns the width, height and batch size of the mask,  
and passes it through unchanged.  

"""

    def getsize(self, mask):
        width = mask.shape[2]
        height = mask.shape[1]
        count = mask.shape[0]
        return {"ui": {
            "text": [f"{count}x{width}x{height}"]}, 
            "result": (mask, width, height, count) 
        }

class GrowMaskWithBlur:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "mask": ("MASK",),
                "expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}),
                "incremental_expandrate": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100.0, "step": 0.1}),
                "tapered_corners": ("BOOLEAN", {"default": True}),
                "flip_input": ("BOOLEAN", {"default": False}),
                "blur_radius": ("FLOAT", {
                    "default": 0.0,
                    "min": 0.0,
                    "max": 100,
                    "step": 0.1
                }),
                "lerp_alpha": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                "decay_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
            },
            "optional": {
                "fill_holes": ("BOOLEAN", {"default": False}),
            },
        }

    CATEGORY = "KJNodes/masking"
    RETURN_TYPES = ("MASK", "MASK",)
    RETURN_NAMES = ("mask", "mask_inverted",)
    FUNCTION = "expand_mask"
    DESCRIPTION = """
# GrowMaskWithBlur
- mask: Input mask or mask batch
- expand: Expand or contract mask or mask batch by a given amount
- incremental_expandrate: increase expand rate by a given amount per frame
- tapered_corners: use tapered corners
- flip_input: flip input mask
- blur_radius: value higher than 0 will blur the mask
- lerp_alpha: alpha value for interpolation between frames
- decay_factor: decay value for interpolation between frames
- fill_holes: fill holes in the mask (slow)"""
    
    def expand_mask(self, mask, expand, tapered_corners, flip_input, blur_radius, incremental_expandrate, lerp_alpha, decay_factor, fill_holes=False):
        alpha = lerp_alpha
        decay = decay_factor
        if flip_input:
            mask = 1.0 - mask
        c = 0 if tapered_corners else 1
        kernel = np.array([[c, 1, c],
                           [1, 1, 1],
                           [c, 1, c]])
        growmask = mask.reshape((-1, mask.shape[-2], mask.shape[-1])).cpu()
        out = []
        previous_output = None
        current_expand = expand
        for m in growmask:
            output = m.numpy().astype(np.float32)
            for _ in range(abs(round(current_expand))):
                if current_expand < 0:
                    output = scipy.ndimage.grey_erosion(output, footprint=kernel)
                else:
                    output = scipy.ndimage.grey_dilation(output, footprint=kernel)
            if current_expand < 0:
                current_expand -= abs(incremental_expandrate)
            else:
                current_expand += abs(incremental_expandrate)
            if fill_holes:
                binary_mask = output > 0
                output = scipy.ndimage.binary_fill_holes(binary_mask)
                output = output.astype(np.float32) * 255
            output = torch.from_numpy(output)
            if alpha < 1.0 and previous_output is not None:
                # Interpolate between the previous and current frame
                output = alpha * output + (1 - alpha) * previous_output
            if decay < 1.0 and previous_output is not None:
                # Add the decayed previous output to the current frame
                output += decay * previous_output
                output = output / output.max()
            previous_output = output
            out.append(output)

        if blur_radius != 0:
            # Convert the tensor list to PIL images, apply blur, and convert back
            for idx, tensor in enumerate(out):
                # Convert tensor to PIL image
                pil_image = tensor2pil(tensor.cpu().detach())[0]
                # Apply Gaussian blur
                pil_image = pil_image.filter(ImageFilter.GaussianBlur(blur_radius))
                # Convert back to tensor
                out[idx] = pil2tensor(pil_image)
            blurred = torch.cat(out, dim=0)
            return (blurred, 1.0 - blurred)
        else:
            return (torch.stack(out, dim=0), 1.0 - torch.stack(out, dim=0),)
        
class MaskBatchMulti:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
                "mask_1": ("MASK", ),
                "mask_2": ("MASK", ),
            },
    }

    RETURN_TYPES = ("MASK",)
    RETURN_NAMES = ("masks",)
    FUNCTION = "combine"
    CATEGORY = "KJNodes/masking"
    DESCRIPTION = """
Creates an image batch from multiple masks.  
You can set how many inputs the node has,  
with the **inputcount** and clicking update.
"""

    def combine(self, inputcount, **kwargs):
        mask = kwargs["mask_1"]
        for c in range(1, inputcount):
            new_mask = kwargs[f"mask_{c + 1}"]
            if mask.shape[1:] != new_mask.shape[1:]:
                new_mask = F.interpolate(new_mask.unsqueeze(1), size=(mask.shape[1], mask.shape[2]), mode="bicubic").squeeze(1)
            mask = torch.cat((mask, new_mask), dim=0)
        return (mask,)

class OffsetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "mask": ("MASK",),
                "x": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
                "y": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
                "angle": ("INT", { "default": 0, "min": -360, "max": 360, "step": 1, "display": "number" }),
                "duplication_factor": ("INT", { "default": 1, "min": 1, "max": 1000, "step": 1, "display": "number" }),
                "roll": ("BOOLEAN", { "default": False }),
                "incremental": ("BOOLEAN", { "default": False }),
                "padding_mode": (
            [   
                'empty',
                'border',
                'reflection',
                
            ], {
               "default": 'empty'
            }),
            }
        }

    RETURN_TYPES = ("MASK",)
    RETURN_NAMES = ("mask",)
    FUNCTION = "offset"
    CATEGORY = "KJNodes/masking"
    DESCRIPTION = """
Offsets the mask by the specified amount.  
 - mask: Input mask or mask batch
 - x: Horizontal offset
 - y: Vertical offset
 - angle: Angle in degrees
 - roll: roll edge wrapping
 - duplication_factor: Number of times to duplicate the mask to form a batch
 - border padding_mode: Padding mode for the mask
"""

    def offset(self, mask, x, y, angle, roll=False, incremental=False, duplication_factor=1, padding_mode="empty"):
        # Create duplicates of the mask batch
        mask = mask.repeat(duplication_factor, 1, 1).clone()

        batch_size, height, width = mask.shape

        if angle != 0 and incremental:
            for i in range(batch_size):
                rotation_angle = angle * (i+1)
                mask[i] = TF.rotate(mask[i].unsqueeze(0), rotation_angle).squeeze(0)
        elif angle > 0:
            for i in range(batch_size):
                mask[i] = TF.rotate(mask[i].unsqueeze(0), angle).squeeze(0)

        if roll:
            if incremental:
                for i in range(batch_size):
                    shift_x = min(x*(i+1), width-1)
                    shift_y = min(y*(i+1), height-1)
                    if shift_x != 0:
                        mask[i] = torch.roll(mask[i], shifts=shift_x, dims=1)
                    if shift_y != 0:
                        mask[i] = torch.roll(mask[i], shifts=shift_y, dims=0)
            else:
                shift_x = min(x, width-1)
                shift_y = min(y, height-1)
                if shift_x != 0:
                    mask = torch.roll(mask, shifts=shift_x, dims=2)
                if shift_y != 0:
                    mask = torch.roll(mask, shifts=shift_y, dims=1)
        else:
            
            for i in range(batch_size):
                if incremental:
                    temp_x = min(x * (i+1), width-1)
                    temp_y = min(y * (i+1), height-1)
                else:
                    temp_x = min(x, width-1)
                    temp_y = min(y, height-1)
                if temp_x > 0:
                    if padding_mode == 'empty':
                        mask[i] = torch.cat([torch.zeros((height, temp_x)), mask[i, :, :-temp_x]], dim=1)
                    elif padding_mode in ['replicate', 'reflect']:
                        mask[i] = F.pad(mask[i, :, :-temp_x], (0, temp_x), mode=padding_mode)
                elif temp_x < 0:
                    if padding_mode == 'empty':
                        mask[i] = torch.cat([mask[i, :, :temp_x], torch.zeros((height, -temp_x))], dim=1)
                    elif padding_mode in ['replicate', 'reflect']:
                        mask[i] = F.pad(mask[i, :, -temp_x:], (temp_x, 0), mode=padding_mode)

                if temp_y > 0:
                    if padding_mode == 'empty':
                        mask[i] = torch.cat([torch.zeros((temp_y, width)), mask[i, :-temp_y, :]], dim=0)
                    elif padding_mode in ['replicate', 'reflect']:
                        mask[i] = F.pad(mask[i, :-temp_y, :], (0, temp_y), mode=padding_mode)
                elif temp_y < 0:
                    if padding_mode == 'empty':
                        mask[i] = torch.cat([mask[i, :temp_y, :], torch.zeros((-temp_y, width))], dim=0)
                    elif padding_mode in ['replicate', 'reflect']:
                        mask[i] = F.pad(mask[i, -temp_y:, :], (temp_y, 0), mode=padding_mode)
           
        return mask,
        
class RoundMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "mask": ("MASK",),  
        }}

    RETURN_TYPES = ("MASK",)
    FUNCTION = "round"
    CATEGORY = "KJNodes/masking"
    DESCRIPTION = """
Rounds the mask or batch of masks to a binary mask.  
<img src="https://github.com/kijai/ComfyUI-KJNodes/assets/40791699/52c85202-f74e-4b96-9dac-c8bda5ddcc40" width="300" height="250" alt="RoundMask example">

"""

    def round(self, mask):
        mask = mask.round()
        return (mask,)
    
class ResizeMask:
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "mask": ("MASK",),
                "width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, "display": "number" }),
                "height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, "display": "number" }),
                "keep_proportions": ("BOOLEAN", { "default": False }),
                "upscale_method": (s.upscale_methods,),
                "crop": (["disabled","center"],),
            }
        }

    RETURN_TYPES = ("MASK", "INT", "INT",)
    RETURN_NAMES = ("mask", "width", "height",)
    FUNCTION = "resize"
    CATEGORY = "KJNodes/masking"
    DESCRIPTION = """
Resizes the mask or batch of masks to the specified width and height.
"""

    def resize(self, mask, width, height, keep_proportions, upscale_method,crop):
        if keep_proportions:
            _, oh, ow = mask.shape
            width = ow if width == 0 else width
            height = oh if height == 0 else height
            ratio = min(width / ow, height / oh)
            width = round(ow*ratio)
            height = round(oh*ratio)
        outputs = mask.unsqueeze(1)
        outputs = common_upscale(outputs, width, height, upscale_method, crop)
        outputs = outputs.squeeze(1)

        return(outputs, outputs.shape[2], outputs.shape[1],)

class RemapMaskRange:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "mask": ("MASK",),
                "min": ("FLOAT", {"default": 0.0,"min": -10.0, "max": 1.0, "step": 0.01}),
                "max": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 10.0, "step": 0.01}),
            }
        }

    RETURN_TYPES = ("MASK",)
    RETURN_NAMES = ("mask",)
    FUNCTION = "remap"
    CATEGORY = "KJNodes/masking"
    DESCRIPTION = """
Sets new min and max values for the mask.
"""

    def remap(self, mask, min, max):

         # Find the maximum value in the mask
        mask_max = torch.max(mask)
        
        # If the maximum mask value is zero, avoid division by zero by setting it to 1
        mask_max = mask_max if mask_max > 0 else 1
        
        # Scale the mask values to the new range defined by min and max
        # The highest pixel value in the mask will be scaled to max
        scaled_mask = (mask / mask_max) * (max - min) + min
        
        # Clamp the values to ensure they are within [0.0, 1.0]
        scaled_mask = torch.clamp(scaled_mask, min=0.0, max=1.0)
        
        return (scaled_mask, )