Spaces:
ginipick
/
Running on Zero

File size: 15,551 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# MIT licensed code from https://github.com/li-plus/seam-carving/

from enum import Enum
from typing import Optional, Tuple

import numba as nb
import numpy as np
from scipy.ndimage import sobel

DROP_MASK_ENERGY = 1e5
KEEP_MASK_ENERGY = 1e3


class OrderMode(str, Enum):
    WIDTH_FIRST = "width-first"
    HEIGHT_FIRST = "height-first"


class EnergyMode(str, Enum):
    FORWARD = "forward"
    BACKWARD = "backward"


def _list_enum(enum_class) -> Tuple:
    return tuple(x.value for x in enum_class)


def _rgb2gray(rgb: np.ndarray) -> np.ndarray:
    """Convert an RGB image to a grayscale image"""
    coeffs = np.array([0.2125, 0.7154, 0.0721], dtype=np.float32)
    return (rgb @ coeffs).astype(rgb.dtype)


def _get_seam_mask(src: np.ndarray, seam: np.ndarray) -> np.ndarray:
    """Convert a list of seam column indices to a mask"""
    return np.eye(src.shape[1], dtype=bool)[seam]


def _remove_seam_mask(src: np.ndarray, seam_mask: np.ndarray) -> np.ndarray:
    """Remove a seam from the source image according to the given seam_mask"""
    if src.ndim == 3:
        h, w, c = src.shape
        seam_mask = np.broadcast_to(seam_mask[:, :, None], src.shape)
        dst = src[~seam_mask].reshape((h, w - 1, c))
    else:
        h, w = src.shape
        dst = src[~seam_mask].reshape((h, w - 1))
    return dst


def _get_energy(gray: np.ndarray) -> np.ndarray:
    """Get backward energy map from the source image"""
    assert gray.ndim == 2

    gray = gray.astype(np.float32)
    grad_x = sobel(gray, axis=1)
    grad_y = sobel(gray, axis=0)
    energy = np.abs(grad_x) + np.abs(grad_y)
    return energy


@nb.njit(nb.int32[:](nb.float32[:, :]), cache=True)
def _get_backward_seam(energy: np.ndarray) -> np.ndarray:
    """Compute the minimum vertical seam from the backward energy map"""
    h, w = energy.shape
    inf = np.array([np.inf], dtype=np.float32)
    cost = np.concatenate((inf, energy[0], inf))
    parent = np.empty((h, w), dtype=np.int32)
    base_idx = np.arange(-1, w - 1, dtype=np.int32)

    for r in range(1, h):
        choices = np.vstack((cost[:-2], cost[1:-1], cost[2:]))
        min_idx = np.argmin(choices, axis=0) + base_idx
        parent[r] = min_idx
        cost[1:-1] = cost[1:-1][min_idx] + energy[r]

    c = np.argmin(cost[1:-1])
    seam = np.empty(h, dtype=np.int32)
    for r in range(h - 1, -1, -1):
        seam[r] = c
        c = parent[r, c]

    return seam


def _get_backward_seams(
    gray: np.ndarray, num_seams: int, aux_energy: Optional[np.ndarray]
) -> np.ndarray:
    """Compute the minimum N vertical seams using backward energy"""
    h, w = gray.shape
    seams = np.zeros((h, w), dtype=bool)
    rows = np.arange(h, dtype=np.int32)
    idx_map = np.broadcast_to(np.arange(w, dtype=np.int32), (h, w))
    energy = _get_energy(gray)
    if aux_energy is not None:
        energy += aux_energy
    for _ in range(num_seams):
        seam = _get_backward_seam(energy)
        seams[rows, idx_map[rows, seam]] = True

        seam_mask = _get_seam_mask(gray, seam)
        gray = _remove_seam_mask(gray, seam_mask)
        idx_map = _remove_seam_mask(idx_map, seam_mask)
        if aux_energy is not None:
            aux_energy = _remove_seam_mask(aux_energy, seam_mask)

        # Only need to re-compute the energy in the bounding box of the seam
        _, cur_w = energy.shape
        lo = max(0, np.min(seam) - 1)
        hi = min(cur_w, np.max(seam) + 1)
        pad_lo = 1 if lo > 0 else 0
        pad_hi = 1 if hi < cur_w - 1 else 0
        mid_block = gray[:, lo - pad_lo : hi + pad_hi]
        _, mid_w = mid_block.shape
        mid_energy = _get_energy(mid_block)[:, pad_lo : mid_w - pad_hi]
        if aux_energy is not None:
            mid_energy += aux_energy[:, lo:hi]
        energy = np.hstack((energy[:, :lo], mid_energy, energy[:, hi + 1 :]))

    return seams


@nb.njit(
    [
        nb.int32[:](nb.float32[:, :], nb.none),
        nb.int32[:](nb.float32[:, :], nb.float32[:, :]),
    ],
    cache=True,
)
def _get_forward_seam(gray: np.ndarray, aux_energy: Optional[np.ndarray]) -> np.ndarray:
    """Compute the minimum vertical seam using forward energy"""
    h, w = gray.shape

    gray = np.hstack((gray[:, :1], gray, gray[:, -1:]))

    inf = np.array([np.inf], dtype=np.float32)
    dp = np.concatenate((inf, np.abs(gray[0, 2:] - gray[0, :-2]), inf))

    parent = np.empty((h, w), dtype=np.int32)
    base_idx = np.arange(-1, w - 1, dtype=np.int32)

    inf = np.array([np.inf], dtype=np.float32)
    for r in range(1, h):
        curr_shl = gray[r, 2:]
        curr_shr = gray[r, :-2]
        cost_mid = np.abs(curr_shl - curr_shr)
        if aux_energy is not None:
            cost_mid += aux_energy[r]

        prev_mid = gray[r - 1, 1:-1]
        cost_left = cost_mid + np.abs(prev_mid - curr_shr)
        cost_right = cost_mid + np.abs(prev_mid - curr_shl)

        dp_mid = dp[1:-1]
        dp_left = dp[:-2]
        dp_right = dp[2:]

        choices = np.vstack(
            (cost_left + dp_left, cost_mid + dp_mid, cost_right + dp_right)
        )
        min_idx = np.argmin(choices, axis=0)
        parent[r] = min_idx + base_idx
        # numba does not support specifying axis in np.min, below loop is equivalent to:
        # `dp_mid[:] = np.min(choices, axis=0)` or `dp_mid[:] = choices[min_idx, np.arange(w)]`
        for j, i in enumerate(min_idx):
            dp_mid[j] = choices[i, j]

    c = np.argmin(dp[1:-1])
    seam = np.empty(h, dtype=np.int32)
    for r in range(h - 1, -1, -1):
        seam[r] = c
        c = parent[r, c]

    return seam


def _get_forward_seams(
    gray: np.ndarray, num_seams: int, aux_energy: Optional[np.ndarray]
) -> np.ndarray:
    """Compute minimum N vertical seams using forward energy"""
    h, w = gray.shape
    seams = np.zeros((h, w), dtype=bool)
    rows = np.arange(h, dtype=np.int32)
    idx_map = np.broadcast_to(np.arange(w, dtype=np.int32), (h, w))
    for _ in range(num_seams):
        seam = _get_forward_seam(gray, aux_energy)
        seams[rows, idx_map[rows, seam]] = True
        seam_mask = _get_seam_mask(gray, seam)
        gray = _remove_seam_mask(gray, seam_mask)
        idx_map = _remove_seam_mask(idx_map, seam_mask)
        if aux_energy is not None:
            aux_energy = _remove_seam_mask(aux_energy, seam_mask)

    return seams


def _get_seams(
    gray: np.ndarray, num_seams: int, energy_mode: str, aux_energy: Optional[np.ndarray]
) -> np.ndarray:
    """Get the minimum N seams from the grayscale image"""
    gray = np.asarray(gray, dtype=np.float32)
    if energy_mode == EnergyMode.BACKWARD:
        return _get_backward_seams(gray, num_seams, aux_energy)
    elif energy_mode == EnergyMode.FORWARD:
        return _get_forward_seams(gray, num_seams, aux_energy)
    else:
        raise ValueError(
            f"expect energy_mode to be one of {_list_enum(EnergyMode)}, got {energy_mode}"
        )


def _reduce_width(
    src: np.ndarray,
    delta_width: int,
    energy_mode: str,
    aux_energy: Optional[np.ndarray],
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
    """Reduce the width of image by delta_width pixels"""
    assert src.ndim in (2, 3) and delta_width >= 0
    if src.ndim == 2:
        gray = src
        src_h, src_w = src.shape
        dst_shape: Tuple[int, ...] = (src_h, src_w - delta_width)
    else:
        gray = _rgb2gray(src)
        src_h, src_w, src_c = src.shape
        dst_shape = (src_h, src_w - delta_width, src_c)

    to_keep = ~_get_seams(gray, delta_width, energy_mode, aux_energy)
    dst = src[to_keep].reshape(dst_shape)
    if aux_energy is not None:
        aux_energy = aux_energy[to_keep].reshape(dst_shape[:2])
    return dst, aux_energy


@nb.njit(
    nb.float32[:, :, :](nb.float32[:, :, :], nb.boolean[:, :], nb.int32), cache=True
)
def _insert_seams_kernel(
    src: np.ndarray, seams: np.ndarray, delta_width: int
) -> np.ndarray:
    """The numba kernel for inserting seams"""
    src_h, src_w, src_c = src.shape
    dst = np.empty((src_h, src_w + delta_width, src_c), dtype=src.dtype)
    for row in range(src_h):
        dst_col = 0
        for src_col in range(src_w):
            if seams[row, src_col]:
                left = src[row, max(src_col - 1, 0)]
                right = src[row, src_col]
                dst[row, dst_col] = (left + right) / 2
                dst_col += 1
            dst[row, dst_col] = src[row, src_col]
            dst_col += 1
    return dst


def _insert_seams(src: np.ndarray, seams: np.ndarray, delta_width: int) -> np.ndarray:
    """Insert multiple seams into the source image"""
    dst = src.astype(np.float32)
    if dst.ndim == 2:
        dst = dst[:, :, None]
    dst = _insert_seams_kernel(dst, seams, delta_width).astype(src.dtype)
    if src.ndim == 2:
        dst = dst.squeeze(-1)
    return dst


def _expand_width(
    src: np.ndarray,
    delta_width: int,
    energy_mode: str,
    aux_energy: Optional[np.ndarray],
    step_ratio: float,
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
    """Expand the width of image by delta_width pixels"""
    assert src.ndim in (2, 3) and delta_width >= 0
    if not 0 < step_ratio <= 1:
        raise ValueError(f"expect `step_ratio` to be between (0,1], got {step_ratio}")

    dst = src
    while delta_width > 0:
        max_step_size = max(1, round(step_ratio * dst.shape[1]))
        step_size = min(max_step_size, delta_width)
        gray = dst if dst.ndim == 2 else _rgb2gray(dst)
        seams = _get_seams(gray, step_size, energy_mode, aux_energy)
        dst = _insert_seams(dst, seams, step_size)
        if aux_energy is not None:
            aux_energy = _insert_seams(aux_energy, seams, step_size)
        delta_width -= step_size

    return dst, aux_energy


def _resize_width(
    src: np.ndarray,
    width: int,
    energy_mode: str,
    aux_energy: Optional[np.ndarray],
    step_ratio: float,
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
    """Resize the width of image by removing vertical seams"""
    assert src.size > 0 and src.ndim in (2, 3)
    assert width > 0

    src_w = src.shape[1]
    if src_w < width:
        dst, aux_energy = _expand_width(
            src, width - src_w, energy_mode, aux_energy, step_ratio
        )
    else:
        dst, aux_energy = _reduce_width(src, src_w - width, energy_mode, aux_energy)
    return dst, aux_energy


def _transpose_image(src: np.ndarray) -> np.ndarray:
    """Transpose a source image in rgb or grayscale format"""
    if src.ndim == 3:
        dst = src.transpose((1, 0, 2))
    else:
        dst = src.T
    return dst


def _resize_height(
    src: np.ndarray,
    height: int,
    energy_mode: str,
    aux_energy: Optional[np.ndarray],
    step_ratio: float,
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
    """Resize the height of image by removing horizontal seams"""
    assert src.ndim in (2, 3) and height > 0
    if aux_energy is not None:
        aux_energy = aux_energy.T
    src = _transpose_image(src)
    src, aux_energy = _resize_width(src, height, energy_mode, aux_energy, step_ratio)
    src = _transpose_image(src)
    if aux_energy is not None:
        aux_energy = aux_energy.T
    return src, aux_energy


def _check_mask(mask: np.ndarray, shape: Tuple[int, ...]) -> np.ndarray:
    """Ensure the mask to be a 2D grayscale map of specific shape"""
    mask = np.asarray(mask, dtype=bool)
    if mask.ndim != 2:
        raise ValueError(f"expect mask to be a 2d binary map, got shape {mask.shape}")
    if mask.shape != shape:
        raise ValueError(
            f"expect the shape of mask to match the image, got {mask.shape} vs {shape}"
        )
    return mask


def _check_src(src: np.ndarray) -> np.ndarray:
    """Ensure the source to be RGB or grayscale"""
    src = np.asarray(src)
    if src.size == 0 or src.ndim not in (2, 3):
        raise ValueError(
            f"expect a 3d rgb image or a 2d grayscale image, got image in shape {src.shape}"
        )
    return src


def seam_carving(
    src: np.ndarray,
    size: Optional[Tuple[int, int]] = None,
    energy_mode: str = "backward",
    order: str = "width-first",
    keep_mask: Optional[np.ndarray] = None,
    drop_mask: Optional[np.ndarray] = None,
    step_ratio: float = 0.5,
) -> np.ndarray:
    """Resize the image using the content-aware seam-carving algorithm.

    :param src: A source image in RGB or grayscale format.
    :param size: The target size in pixels, as a 2-tuple (width, height).
    :param energy_mode: Policy to compute energy for the source image. Could be
        one of ``backward`` or ``forward``. If ``backward``, compute the energy
        as the gradient at each pixel. If ``forward``, compute the energy as the
        distances between adjacent pixels after each pixel is removed.
    :param order: The order to remove horizontal and vertical seams. Could be
        one of ``width-first`` or ``height-first``. In ``width-first`` mode, we
        remove or insert all vertical seams first, then the horizontal ones,
        while ``height-first`` is the opposite.
    :param keep_mask: An optional mask where the foreground is protected from
        seam removal. If not specified, no area will be protected.
    :param drop_mask: An optional binary object mask to remove. If given, the
        object will be removed before resizing the image to the target size.
    :param step_ratio: The maximum size expansion ratio in one seam carving step.
        The image will be expanded in multiple steps if target size is too large.
    :return: A resized copy of the source image.
    """
    src = _check_src(src)

    if order not in _list_enum(OrderMode):
        raise ValueError(
            f"expect order to be one of {_list_enum(OrderMode)}, got {order}"
        )

    aux_energy = None

    if keep_mask is not None:
        keep_mask = _check_mask(keep_mask, src.shape[:2])

        aux_energy = np.zeros(src.shape[:2], dtype=np.float32)
        aux_energy[keep_mask] += KEEP_MASK_ENERGY

    # remove object if `drop_mask` is given
    if drop_mask is not None:
        drop_mask = _check_mask(drop_mask, src.shape[:2])

        if aux_energy is None:
            aux_energy = np.zeros(src.shape[:2], dtype=np.float32)
        aux_energy[drop_mask] -= DROP_MASK_ENERGY

        if order == OrderMode.HEIGHT_FIRST:
            src = _transpose_image(src)
            aux_energy = aux_energy.T

        num_seams = (aux_energy < 0).sum(1).max()
        while num_seams > 0:
            src, aux_energy = _reduce_width(src, num_seams, energy_mode, aux_energy)
            num_seams = (aux_energy < 0).sum(1).max()

        if order == OrderMode.HEIGHT_FIRST:
            src = _transpose_image(src)
            aux_energy = aux_energy.T

    # resize image if `size` is given
    if size is not None:
        width, height = size
        width = round(width)
        height = round(height)
        if width <= 0 or height <= 0:
            raise ValueError(f"expect target size to be positive, got {size}")

        if order == OrderMode.WIDTH_FIRST:
            src, aux_energy = _resize_width(
                src, width, energy_mode, aux_energy, step_ratio
            )
            src, aux_energy = _resize_height(
                src, height, energy_mode, aux_energy, step_ratio
            )
        else:
            src, aux_energy = _resize_height(
                src, height, energy_mode, aux_energy, step_ratio
            )
            src, aux_energy = _resize_width(
                src, width, energy_mode, aux_energy, step_ratio
            )

    return src