Spaces:
ginipick
/
Running on Zero

File size: 9,014 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os

import comfy
import comfy.utils
import cv2
import folder_paths
import numpy as np
import torch
from comfy import model_management
from PIL import Image

from ..log import NullWriter, log
from ..utils import get_model_path, np2tensor, pil2tensor, tensor2np


class MTB_LoadFaceEnhanceModel:
    """Loads a GFPGan or RestoreFormer model for face enhancement."""

    def __init__(self) -> None:
        pass

    @classmethod
    def get_models_root(cls):
        fr = get_model_path("face_restore")
        # fr = Path(folder_paths.models_dir) / "face_restore"
        if fr.exists():
            return (fr, None)

        um = get_model_path("upscale_models")
        return (fr, um) if um.exists() else (None, None)

    @classmethod
    def get_models(cls):
        fr_models_path, um_models_path = cls.get_models_root()

        if fr_models_path is None and um_models_path is None:
            if not hasattr(cls, "_warned"):
                log.warning("Face restoration models not found.")
                cls._warned = True
            return []
        if not fr_models_path.exists():
            # log.warning(
            #     f"No Face Restore checkpoints found at {fr_models_path} (if you've used mtb before these checkpoints were saved in upscale_models before)"
            # )
            # log.warning(
            #     "For now we fallback to upscale_models but this will be removed in a future version"
            # )
            if um_models_path.exists():
                return [
                    x
                    for x in um_models_path.iterdir()
                    if x.name.endswith(".pth")
                    and ("GFPGAN" in x.name or "RestoreFormer" in x.name)
                ]
            return []

        return [
            x
            for x in fr_models_path.iterdir()
            if x.name.endswith(".pth")
            and ("GFPGAN" in x.name or "RestoreFormer" in x.name)
        ]

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "model_name": (
                    [x.name for x in cls.get_models()],
                    {"default": "None"},
                ),
                "upscale": ("INT", {"default": 1}),
            },
            "optional": {"bg_upsampler": ("UPSCALE_MODEL", {"default": None})},
        }

    RETURN_TYPES = ("FACEENHANCE_MODEL",)
    RETURN_NAMES = ("model",)
    FUNCTION = "load_model"
    CATEGORY = "mtb/facetools"
    DEPRECATED = True

    def load_model(self, model_name, upscale=2, bg_upsampler=None):
        from gfpgan import GFPGANer

        basic = "RestoreFormer" not in model_name

        fr_root, um_root = self.get_models_root()

        if bg_upsampler is not None:
            log.warning(
                f"Upscale value overridden to {bg_upsampler.scale} from bg_upsampler"
            )
            upscale = bg_upsampler.scale
            bg_upsampler = BGUpscaleWrapper(bg_upsampler)

        sys.stdout = NullWriter()
        model = GFPGANer(
            model_path=(
                (fr_root if fr_root.exists() else um_root) / model_name
            ).as_posix(),
            upscale=upscale,
            arch="clean"
            if basic
            else "RestoreFormer",  # or original for v1.0 only
            channel_multiplier=2,  # 1 for v1.0 only
            bg_upsampler=bg_upsampler,
        )

        sys.stdout = sys.__stdout__
        return (model,)


class BGUpscaleWrapper:
    def __init__(self, upscale_model) -> None:
        self.upscale_model = upscale_model

    def enhance(self, img: Image.Image, outscale=2):
        device = model_management.get_torch_device()
        self.upscale_model.to(device)

        tile = 128 + 64
        overlap = 8

        imgt = np2tensor(img)
        imgt = imgt.movedim(-1, -3).to(device)

        steps = imgt.shape[0] * comfy.utils.get_tiled_scale_steps(
            imgt.shape[3],
            imgt.shape[2],
            tile_x=tile,
            tile_y=tile,
            overlap=overlap,
        )

        log.debug(f"Steps: {steps}")

        pbar = comfy.utils.ProgressBar(steps)

        s = comfy.utils.tiled_scale(
            imgt,
            lambda a: self.upscale_model(a),
            tile_x=tile,
            tile_y=tile,
            overlap=overlap,
            upscale_amount=self.upscale_model.scale,
            pbar=pbar,
        )

        self.upscale_model.cpu()
        s = torch.clamp(s.movedim(-3, -1), min=0, max=1.0)
        return (tensor2np(s)[0],)


import sys


class MTB_RestoreFace:
    """Uses GFPGan to restore faces"""

    def __init__(self) -> None:
        pass

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "restore"
    CATEGORY = "mtb/facetools"
    DEPRECATED = True

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "image": ("IMAGE",),
                "model": ("FACEENHANCE_MODEL",),
                # Input are aligned faces
                "aligned": ("BOOLEAN", {"default": False}),
                # Only restore the center face
                "only_center_face": ("BOOLEAN", {"default": False}),
                # Adjustable weights
                "weight": ("FLOAT", {"default": 0.5}),
                "save_tmp_steps": ("BOOLEAN", {"default": True}),
            },
            "optional": {
                "preserve_alpha": ("BOOLEAN", {"default": True}),
            },
        }

    def do_restore(
        self,
        image: torch.Tensor,
        model,
        aligned,
        only_center_face,
        weight,
        save_tmp_steps,
        preserve_alpha: bool = False,
    ) -> torch.Tensor:
        pimage = tensor2np(image)[0]
        width, height = pimage.shape[1], pimage.shape[0]
        source_img = cv2.cvtColor(np.array(pimage), cv2.COLOR_RGB2BGR)

        alpha_channel = None
        if (
            preserve_alpha and image.size(-1) == 4
        ):  # Check if the image has an alpha channel
            alpha_channel = pimage[:, :, 3]
            pimage = pimage[:, :, :3]  # Remove alpha channel for processing

        sys.stdout = NullWriter()
        cropped_faces, restored_faces, restored_img = model.enhance(
            source_img,
            has_aligned=aligned,
            only_center_face=only_center_face,
            paste_back=True,
            # TODO: weight has no effect in 1.3 and 1.4 (only tested these for now...)
            weight=weight,
        )
        sys.stdout = sys.__stdout__
        log.warning(f"Weight value has no effect for now. (value: {weight})")

        if save_tmp_steps:
            self.save_intermediate_images(
                cropped_faces, restored_faces, height, width
            )
        output = None
        if restored_img is not None:
            restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
            output = Image.fromarray(restored_img)

            if alpha_channel is not None:
                alpha_resized = Image.fromarray(alpha_channel).resize(
                    output.size, Image.LANCZOS
                )
                output.putalpha(alpha_resized)
            # imwrite(restored_img, save_restore_path)

        return pil2tensor(output)

    def restore(
        self,
        image: torch.Tensor,
        model,
        aligned=False,
        only_center_face=False,
        weight=0.5,
        save_tmp_steps=True,
        preserve_alpha: bool = False,
    ) -> tuple[torch.Tensor]:
        out = [
            self.do_restore(
                image[i],
                model,
                aligned,
                only_center_face,
                weight,
                save_tmp_steps,
                preserve_alpha,
            )
            for i in range(image.size(0))
        ]

        return (torch.cat(out, dim=0),)

    def get_step_image_path(self, step, idx):
        (
            full_output_folder,
            filename,
            counter,
            _subfolder,
            _filename_prefix,
        ) = folder_paths.get_save_image_path(
            f"{step}_{idx:03}",
            folder_paths.temp_directory,
        )
        file = f"{filename}_{counter:05}_.png"

        return os.path.join(full_output_folder, file)

    def save_intermediate_images(
        self, cropped_faces, restored_faces, height, width
    ):
        for idx, (cropped_face, restored_face) in enumerate(
            zip(cropped_faces, restored_faces, strict=False)
        ):
            face_id = idx + 1
            file = self.get_step_image_path("cropped_faces", face_id)
            cv2.imwrite(file, cropped_face)

            file = self.get_step_image_path("cropped_faces_restored", face_id)
            cv2.imwrite(file, restored_face)

            file = self.get_step_image_path("cropped_faces_compare", face_id)

            # save comparison image
            cmp_img = np.concatenate((cropped_face, restored_face), axis=1)
            cv2.imwrite(file, cmp_img)


__nodes__ = [MTB_RestoreFace, MTB_LoadFaceEnhanceModel]