Spaces:
ginipick
/
Running on Zero

File size: 12,453 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
from pathlib import Path

import safetensors.torch
import torch
import tqdm

from ..log import log
from ..utils import Operation, Precision
from ..utils import output_dir as comfy_out_dir

PRUNE_DATA = {
    "known_junk_prefix": [
        "embedding_manager.embedder.",
        "lora_te_text_model",
        "control_model.",
    ],
    "nai_keys": {
        "cond_stage_model.transformer.embeddings.": "cond_stage_model.transformer.text_model.embeddings.",
        "cond_stage_model.transformer.encoder.": "cond_stage_model.transformer.text_model.encoder.",
        "cond_stage_model.transformer.final_layer_norm.": "cond_stage_model.transformer.text_model.final_layer_norm.",
    },
}

# position_ids in clip is int64. model_ema.num_updates is int32
dtypes_to_fp16 = {torch.float32, torch.float64, torch.bfloat16}
dtypes_to_bf16 = {torch.float32, torch.float64, torch.float16}
dtypes_to_fp8 = {torch.float32, torch.float64, torch.bfloat16, torch.float16}


class MTB_ModelPruner:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "optional": {
                "unet": ("MODEL",),
                "clip": ("CLIP",),
                "vae": ("VAE",),
            },
            "required": {
                "save_separately": ("BOOLEAN", {"default": False}),
                "save_folder": ("STRING", {"default": "checkpoints/ComfyUI"}),
                "fix_clip": ("BOOLEAN", {"default": True}),
                "remove_junk": ("BOOLEAN", {"default": True}),
                "ema_mode": (
                    ("disabled", "remove_ema", "ema_only"),
                    {"default": "remove_ema"},
                ),
                "precision_unet": (
                    Precision.list_members(),
                    {"default": Precision.FULL.value},
                ),
                "operation_unet": (
                    Operation.list_members(),
                    {"default": Operation.CONVERT.value},
                ),
                "precision_clip": (
                    Precision.list_members(),
                    {"default": Precision.FULL.value},
                ),
                "operation_clip": (
                    Operation.list_members(),
                    {"default": Operation.CONVERT.value},
                ),
                "precision_vae": (
                    Precision.list_members(),
                    {"default": Precision.FULL.value},
                ),
                "operation_vae": (
                    Operation.list_members(),
                    {"default": Operation.CONVERT.value},
                ),
            },
        }

    OUTPUT_NODE = True
    RETURN_TYPES = ()
    CATEGORY = "mtb/prune"
    FUNCTION = "prune"

    def convert_precision(self, tensor: torch.Tensor, precision: Precision):
        precision = Precision.from_str(precision)
        log.debug(f"Converting to {precision}")
        match precision:
            case Precision.FP8:
                if tensor.dtype in dtypes_to_fp8:
                    return tensor.to(torch.float8_e4m3fn)
                log.error(f"Cannot convert {tensor.dtype} to fp8")
                return tensor
            case Precision.FP16:
                if tensor.dtype in dtypes_to_fp16:
                    return tensor.half()
                log.error(f"Cannot convert {tensor.dtype} to f16")
                return tensor
            case Precision.BF16:
                if tensor.dtype in dtypes_to_bf16:
                    return tensor.bfloat16()
                log.error(f"Cannot convert {tensor.dtype} to bf16")
                return tensor
            case Precision.FULL | Precision.FP32:
                return tensor

    def is_sdxl_model(self, clip: dict[str, torch.Tensor] | None):
        if clip:
            return (any(k.startswith("conditioner.embedders") for k in clip),)
        return False

    def has_ema(self, unet: dict[str, torch.Tensor]):
        return any(k.startswith("model_ema") for k in unet)

    def fix_clip(self, clip: dict[str, torch.Tensor] | None):
        if self.is_sdxl_model(clip):
            log.warn("[fix clip] SDXL not supported")
            return

        if clip is None:
            return

        position_id_key = (
            "cond_stage_model.transformer.text_model.embeddings.position_ids"
        )
        if position_id_key in clip:
            correct = torch.Tensor([list(range(77))]).to(torch.int64)
            now = clip[position_id_key].to(torch.int64)

            broken = correct.ne(now)
            broken = [i for i in range(77) if broken[0][i]]

            if len(broken) != 0:
                clip[position_id_key] = correct
                log.info(f"[Converter] Fixed broken clip\n{broken}")
            else:
                log.info(
                    "[Converter] Clip in this model is fine, skip fixing..."
                )

        else:
            log.info("[Converter] Missing position id in model, try fixing...")
            clip[position_id_key] = torch.Tensor([list(range(77))]).to(
                torch.int64
            )
        return clip

    def get_dicts(self, unet, clip, vae):
        clip_sd = clip.get_sd()
        state_dict = unet.model.state_dict_for_saving(
            clip_sd, vae.get_sd(), None
        )

        unet = {
            k: v
            for k, v in state_dict.items()
            if k.startswith("model.diffusion_model")
        }
        clip = {
            k: v
            for k, v in state_dict.items()
            if k.startswith("cond_stage_model")
            or k.startswith("conditioner.embedders")
        }
        vae = {
            k: v
            for k, v in state_dict.items()
            if k.startswith("first_stage_model")
        }

        other = {
            k: v
            for k, v in state_dict.items()
            if k not in unet and k not in vae and k not in clip
        }

        return (unet, clip, vae, other)

    def do_remove_junk(self, tensors: dict[str, dict[str, torch.Tensor]]):
        need_delete: list[str] = []
        for layer in tensors:
            for key in layer:
                for jk in PRUNE_DATA["known_junk_prefix"]:
                    if key.startswith(jk):
                        need_delete.append(".".join([layer, key]))

        for k in need_delete:
            log.info(f"Removing junk data: {k}")
            del tensors[k]

        return tensors

    def prune(
        self,
        *,
        save_separately: bool,
        save_folder: str,
        fix_clip: bool,
        remove_junk: bool,
        ema_mode: str,
        precision_unet: Precision,
        precision_clip: Precision,
        precision_vae: Precision,
        operation_unet: str,
        operation_clip: str,
        operation_vae: str,
        unet: dict[str, torch.Tensor] | None = None,
        clip: dict[str, torch.Tensor] | None = None,
        vae: dict[str, torch.Tensor] | None = None,
    ):
        operation = {
            "unet": Operation.from_str(operation_unet),
            "clip": Operation.from_str(operation_clip),
            "vae": Operation.from_str(operation_vae),
        }
        precision = {
            "unet": Precision.from_str(precision_unet),
            "clip": Precision.from_str(precision_clip),
            "vae": Precision.from_str(precision_vae),
        }

        unet, clip, vae, _other = self.get_dicts(unet, clip, vae)

        out_dir = Path(save_folder)
        folder = out_dir.parent
        if not out_dir.is_absolute():
            folder = (comfy_out_dir / save_folder).parent

        if not folder.exists():
            if folder.parent.exists():
                folder.mkdir()
            else:
                raise FileNotFoundError(
                    f"Folder {folder.parent} does not exist"
                )

        name = out_dir.name
        save_name = f"{name}-{precision_unet}"
        if ema_mode != "disabled":
            save_name += f"-{ema_mode}"
        if fix_clip:
            save_name += "-clip-fix"

        if (
            any(o == Operation.CONVERT for o in operation.values())
            and any(p == Precision.FP8 for p in precision.values())
            and torch.__version__ < "2.1.0"
        ):
            raise NotImplementedError(
                "PyTorch 2.1.0 or newer is required for fp8 conversion"
            )

        if not self.is_sdxl_model(clip):
            for part in [unet, vae, clip]:
                if part:
                    nai_keys = PRUNE_DATA["nai_keys"]
                    for k in list(part.keys()):
                        for r in nai_keys:
                            if isinstance(k, str) and k.startswith(r):
                                new_key = k.replace(r, nai_keys[r])
                                part[new_key] = part[k]
                                del part[k]
                                log.info(
                                    f"[Converter] Fixed novelai error key {k}"
                                )
                                break

            if fix_clip:
                clip = self.fix_clip(clip)

        ok: dict[str, dict[str, torch.Tensor]] = {
            "unet": {},
            "clip": {},
            "vae": {},
        }

        def _hf(part: str, wk: str, t: torch.Tensor):
            if not isinstance(t, torch.Tensor):
                log.debug("Not a torch tensor, skipping key")
                return

            log.debug(f"Operation {operation[part]}")
            if operation[part] == Operation.CONVERT:
                ok[part][wk] = self.convert_precision(
                    t, precision[part]
                )  # conv_func(t)
            elif operation[part] == Operation.COPY:
                ok[part][wk] = t
            elif operation[part] == Operation.DELETE:
                return

        log.info("[Converter] Converting model...")

        for part_name, part in zip(
            ["unet", "vae", "clip", "other"],
            [unet, vae, clip],
            strict=False,
        ):
            if part:
                match ema_mode:
                    case "remove_ema":
                        for k, v in tqdm.tqdm(part.items()):
                            if "model_ema." not in k:
                                _hf(part_name, k, v)
                    case "ema_only":
                        if not self.has_ema(part):
                            log.warn("No EMA to extract")
                            return
                        for k in tqdm.tqdm(part):
                            ema_k = "___"
                            try:
                                ema_k = "model_ema." + k[6:].replace(".", "")
                            except Exception:
                                pass
                            if ema_k in part:
                                _hf(part_name, k, part[ema_k])
                            elif not k.startswith("model_ema.") or k in [
                                "model_ema.num_updates",
                                "model_ema.decay",
                            ]:
                                _hf(part_name, k, part[k])
                    case "disabled" | _:
                        for k, v in tqdm.tqdm(part.items()):
                            _hf(part_name, k, v)

                if save_separately:
                    if remove_junk:
                        ok = self.do_remove_junk(ok)

                    flat_ok = {
                        k: v
                        for _, subdict in ok.items()
                        for k, v in subdict.items()
                    }
                    save_path = (
                        folder / f"{part_name}-{save_name}.safetensors"
                    ).as_posix()
                    safetensors.torch.save_file(flat_ok, save_path)
                    ok: dict[str, dict[str, torch.Tensor]] = {
                        "unet": {},
                        "clip": {},
                        "vae": {},
                    }

        if save_separately:
            return ()

        if remove_junk:
            ok = self.do_remove_junk(ok)

        flat_ok = {
            k: v for _, subdict in ok.items() for k, v in subdict.items()
        }

        try:
            safetensors.torch.save_file(
                flat_ok, (folder / f"{save_name}.safetensors").as_posix()
            )
        except Exception as e:
            log.error(e)

        return ()


__nodes__ = [MTB_ModelPruner]