Spaces:
ginipick
/
Running on Zero

File size: 2,521 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import qrcode
import torch
from PIL import Image

from ..log import log
from ..utils import pil2tensor


class MTB_QrCode:
    """Basic QR Code generator."""

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "url": ("STRING", {"default": "https://www.github.com"}),
                "width": (
                    "INT",
                    {"default": 256, "max": 8096, "min": 0, "step": 1},
                ),
                "height": (
                    "INT",
                    {"default": 256, "max": 8096, "min": 0, "step": 1},
                ),
                "error_correct": (("L", "M", "Q", "H"), {"default": "L"}),
                "box_size": (
                    "INT",
                    {"default": 10, "max": 8096, "min": 0, "step": 1},
                ),
                "border": (
                    "INT",
                    {"default": 4, "max": 8096, "min": 0, "step": 1},
                ),
                "invert": (("BOOLEAN",), {"default": False}),
            }
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "do_qr"
    CATEGORY = "mtb/generate"

    def do_qr(
        self,
        *,
        url: str,
        width: int,
        height: int,
        error_correct: str,
        box_size: int,
        border: int,
        invert: bool,
    ) -> tuple[torch.Tensor]:
        log.warning(
            "This node will soon be deprecated, there are much better alternatives like https://github.com/coreyryanhanson/comfy-qr"
        )
        if error_correct == "L" or error_correct not in ["M", "Q", "H"]:
            error_correct = qrcode.constants.ERROR_CORRECT_L
        elif error_correct == "M":
            error_correct = qrcode.constants.ERROR_CORRECT_M
        elif error_correct == "Q":
            error_correct = qrcode.constants.ERROR_CORRECT_Q
        else:
            error_correct = qrcode.constants.ERROR_CORRECT_H

        qr = qrcode.QRCode(
            version=1,
            error_correction=error_correct,
            box_size=box_size,
            border=border,
        )
        qr.add_data(url)
        qr.make(fit=True)

        back_color = (255, 255, 255) if invert else (0, 0, 0)
        fill_color = (0, 0, 0) if invert else (255, 255, 255)

        code = qr.make_image(back_color=back_color, fill_color=fill_color)

        # that we now resize without filtering
        code = code.resize((width, height), Image.NEAREST)

        return (pil2tensor(code),)


__nodes__ = [MTB_QrCode]