Spaces:
ginipick
/
Running on Zero

File size: 4,167 Bytes
4450790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import cv2
import numpy as np
import torch
from huggingface_hub import hf_hub_download

from ..utils import models_dir, np2tensor

# TODO: check if I can make a torch script device independant
# for now I forced it to use cuda.


class MTB_LoadVitMatteModel:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "kind": (("Composition-1K", "Distinctions-646"),),
                "autodownload": ("BOOLEAN", {"default": True}),
            },
        }

    RETURN_TYPES = ("VITMATTE_MODEL",)
    RETURN_NAMES = ("torch_script",)
    CATEGORY = "mtb/vitmatte"
    FUNCTION = "execute"

    def execute(self, *, kind: str, autodownload: bool):
        dest = models_dir / "vitmatte"
        dest.mkdir(exist_ok=True)
        name = "dist" if kind == "Distinctions-646" else "com"

        file = hf_hub_download(
            repo_id="melmass/pytorch-scripts",
            filename=f"vitmatte_b_{name}.pt",
            local_dir=dest.as_posix(),
            local_files_only=not autodownload,
        )
        model = torch.jit.load(file).to("cuda")

        return (model,)


class MTB_GenerateTrimap:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                # "image": ("IMAGE",),
                "mask": ("MASK",),
                "erode": ("INT", {"default": 10}),
                "dilate": ("INT", {"default": 10}),
            },
        }

    RETURN_TYPES = ("IMAGE",)
    RETURN_NAMES = ("trimap",)

    CATEGORY = "mtb/vitmatte"
    FUNCTION = "execute"

    def execute(
        self,
        # image:torch.Tensor,
        mask: torch.Tensor,
        erode: int = 10,
        dilate: int = 10,
    ):
        # TODO: not sure what's the most practical between IMAGE or MASK

        # image = image.to("cuda").half()
        mask = mask.to("cuda").half()

        trimaps = []
        for m in mask:
            mask_arr = m.squeeze(0).to(torch.uint8).cpu().numpy() * 255
            erode_kernel = np.ones((erode, erode), np.uint8)
            dilate_kernel = np.ones((dilate, dilate), np.uint8)
            eroded = cv2.erode(mask_arr, erode_kernel, iterations=5)
            dilated = cv2.dilate(mask_arr, dilate_kernel, iterations=5)
            trimap = np.zeros_like(mask_arr)
            trimap[dilated == 255] = 128
            trimap[eroded == 255] = 255
            trimaps.append(trimap)

        return (np2tensor(trimaps),)


class MTB_ApplyVitMatte:
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "model": ("VITMATTE_MODEL",),
                "image": ("IMAGE",),
                "trimap": ("IMAGE",),
                "returns": (("RGB", "RGBA"),),
            },
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    RETURN_NAMES = ("image (rgba)", "mask")
    CATEGORY = "mtb/utils"
    FUNCTION = "execute"

    def execute(
        self, model, image: torch.Tensor, trimap: torch.Tensor, returns: str
    ):
        im_count = image.shape[0]
        tm_count = trimap.shape[0]

        if im_count != tm_count:
            raise ValueError("image and trimap must have the same batch size")

        outputs_m: list[torch.Tensor] = []
        outputs_i: list[torch.Tensor] = []
        for i, im in enumerate(image):
            tm = trimap[i].half().unsqueeze(2).permute(2, 0, 1).to("cuda")
            im = im.half().permute(2, 0, 1).to("cuda")

            inputs = {"image": im.unsqueeze(0), "trimap": tm.unsqueeze(0)}

            fine_mask = model(inputs)
            foreground = im * fine_mask + (1 - fine_mask)

            if returns == "RGBA":
                rgba_image = torch.cat(
                    (foreground, fine_mask.unsqueeze(0)), dim=0
                )
                outputs_i.append(rgba_image.unsqueeze(0))
            else:
                outputs_i.append(foreground.unsqueeze(0))

            outputs_m.append(fine_mask.unsqueeze(0))

        result_m = torch.cat(outputs_m, dim=0)
        result_i = torch.cat(outputs_i, dim=0)

        return (result_i.permute(0, 2, 3, 1), result_m)


__nodes__ = [MTB_LoadVitMatteModel, MTB_GenerateTrimap, MTB_ApplyVitMatte]