File size: 7,486 Bytes
4450790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import torch
import torch.nn as nn
import folder_paths
import comfy.clip_model
import comfy.clip_vision
import comfy.ops
# code for model from: https://github.com/TencentARC/PhotoMaker/blob/main/photomaker/model.py under Apache License Version 2.0
VISION_CONFIG_DICT = {
"hidden_size": 1024,
"image_size": 224,
"intermediate_size": 4096,
"num_attention_heads": 16,
"num_channels": 3,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768,
"hidden_act": "quick_gelu",
}
class MLP(nn.Module):
def __init__(self, in_dim, out_dim, hidden_dim, use_residual=True, operations=comfy.ops):
super().__init__()
if use_residual:
assert in_dim == out_dim
self.layernorm = operations.LayerNorm(in_dim)
self.fc1 = operations.Linear(in_dim, hidden_dim)
self.fc2 = operations.Linear(hidden_dim, out_dim)
self.use_residual = use_residual
self.act_fn = nn.GELU()
def forward(self, x):
residual = x
x = self.layernorm(x)
x = self.fc1(x)
x = self.act_fn(x)
x = self.fc2(x)
if self.use_residual:
x = x + residual
return x
class FuseModule(nn.Module):
def __init__(self, embed_dim, operations):
super().__init__()
self.mlp1 = MLP(embed_dim * 2, embed_dim, embed_dim, use_residual=False, operations=operations)
self.mlp2 = MLP(embed_dim, embed_dim, embed_dim, use_residual=True, operations=operations)
self.layer_norm = operations.LayerNorm(embed_dim)
def fuse_fn(self, prompt_embeds, id_embeds):
stacked_id_embeds = torch.cat([prompt_embeds, id_embeds], dim=-1)
stacked_id_embeds = self.mlp1(stacked_id_embeds) + prompt_embeds
stacked_id_embeds = self.mlp2(stacked_id_embeds)
stacked_id_embeds = self.layer_norm(stacked_id_embeds)
return stacked_id_embeds
def forward(
self,
prompt_embeds,
id_embeds,
class_tokens_mask,
) -> torch.Tensor:
# id_embeds shape: [b, max_num_inputs, 1, 2048]
id_embeds = id_embeds.to(prompt_embeds.dtype)
num_inputs = class_tokens_mask.sum().unsqueeze(0) # TODO: check for training case
batch_size, max_num_inputs = id_embeds.shape[:2]
# seq_length: 77
seq_length = prompt_embeds.shape[1]
# flat_id_embeds shape: [b*max_num_inputs, 1, 2048]
flat_id_embeds = id_embeds.view(
-1, id_embeds.shape[-2], id_embeds.shape[-1]
)
# valid_id_mask [b*max_num_inputs]
valid_id_mask = (
torch.arange(max_num_inputs, device=flat_id_embeds.device)[None, :]
< num_inputs[:, None]
)
valid_id_embeds = flat_id_embeds[valid_id_mask.flatten()]
prompt_embeds = prompt_embeds.view(-1, prompt_embeds.shape[-1])
class_tokens_mask = class_tokens_mask.view(-1)
valid_id_embeds = valid_id_embeds.view(-1, valid_id_embeds.shape[-1])
# slice out the image token embeddings
image_token_embeds = prompt_embeds[class_tokens_mask]
stacked_id_embeds = self.fuse_fn(image_token_embeds, valid_id_embeds)
assert class_tokens_mask.sum() == stacked_id_embeds.shape[0], f"{class_tokens_mask.sum()} != {stacked_id_embeds.shape[0]}"
prompt_embeds.masked_scatter_(class_tokens_mask[:, None], stacked_id_embeds.to(prompt_embeds.dtype))
updated_prompt_embeds = prompt_embeds.view(batch_size, seq_length, -1)
return updated_prompt_embeds
class PhotoMakerIDEncoder(comfy.clip_model.CLIPVisionModelProjection):
def __init__(self):
self.load_device = comfy.model_management.text_encoder_device()
offload_device = comfy.model_management.text_encoder_offload_device()
dtype = comfy.model_management.text_encoder_dtype(self.load_device)
super().__init__(VISION_CONFIG_DICT, dtype, offload_device, comfy.ops.manual_cast)
self.visual_projection_2 = comfy.ops.manual_cast.Linear(1024, 1280, bias=False)
self.fuse_module = FuseModule(2048, comfy.ops.manual_cast)
def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask):
b, num_inputs, c, h, w = id_pixel_values.shape
id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w)
shared_id_embeds = self.vision_model(id_pixel_values)[2]
id_embeds = self.visual_projection(shared_id_embeds)
id_embeds_2 = self.visual_projection_2(shared_id_embeds)
id_embeds = id_embeds.view(b, num_inputs, 1, -1)
id_embeds_2 = id_embeds_2.view(b, num_inputs, 1, -1)
id_embeds = torch.cat((id_embeds, id_embeds_2), dim=-1)
updated_prompt_embeds = self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask)
return updated_prompt_embeds
class PhotoMakerLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "photomaker_model_name": (folder_paths.get_filename_list("photomaker"), )}}
RETURN_TYPES = ("PHOTOMAKER",)
FUNCTION = "load_photomaker_model"
CATEGORY = "_for_testing/photomaker"
def load_photomaker_model(self, photomaker_model_name):
photomaker_model_path = folder_paths.get_full_path_or_raise("photomaker", photomaker_model_name)
photomaker_model = PhotoMakerIDEncoder()
data = comfy.utils.load_torch_file(photomaker_model_path, safe_load=True)
if "id_encoder" in data:
data = data["id_encoder"]
photomaker_model.load_state_dict(data)
return (photomaker_model,)
class PhotoMakerEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": { "photomaker": ("PHOTOMAKER",),
"image": ("IMAGE",),
"clip": ("CLIP", ),
"text": ("STRING", {"multiline": True, "dynamicPrompts": True, "default": "photograph of photomaker"}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply_photomaker"
CATEGORY = "_for_testing/photomaker"
def apply_photomaker(self, photomaker, image, clip, text):
special_token = "photomaker"
pixel_values = comfy.clip_vision.clip_preprocess(image.to(photomaker.load_device)).float()
try:
index = text.split(" ").index(special_token) + 1
except ValueError:
index = -1
tokens = clip.tokenize(text, return_word_ids=True)
out_tokens = {}
for k in tokens:
out_tokens[k] = []
for t in tokens[k]:
f = list(filter(lambda x: x[2] != index, t))
while len(f) < len(t):
f.append(t[-1])
out_tokens[k].append(f)
cond, pooled = clip.encode_from_tokens(out_tokens, return_pooled=True)
if index > 0:
token_index = index - 1
num_id_images = 1
class_tokens_mask = [True if token_index <= i < token_index+num_id_images else False for i in range(77)]
out = photomaker(id_pixel_values=pixel_values.unsqueeze(0), prompt_embeds=cond.to(photomaker.load_device),
class_tokens_mask=torch.tensor(class_tokens_mask, dtype=torch.bool, device=photomaker.load_device).unsqueeze(0))
else:
out = cond
return ([[out, {"pooled_output": pooled}]], )
NODE_CLASS_MAPPINGS = {
"PhotoMakerLoader": PhotoMakerLoader,
"PhotoMakerEncode": PhotoMakerEncode,
}
|