StyleGen / app.py
multimodalart's picture
Update app.py
0004449 verified
raw
history blame
12.3 kB
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from PIL import Image
from huggingface_hub import hf_hub_download
import spaces
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", filename="flux1-redux-dev.safetensors", local_dir="models/style_models")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Depth-dev", filename="flux1-depth-dev.safetensors", local_dir="models/diffusion_models")
hf_hub_download(repo_id="Comfy-Org/sigclip_vision_384", filename="sigclip_vision_patch14_384.safetensors", local_dir="models/clip_vision")
hf_hub_download(repo_id="Kijai/DepthAnythingV2-safetensors", filename="depth_anything_v2_vitl_fp32.safetensors", local_dir="models/depthanything")
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae/FLUX1")
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders")
t5_path = hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders/t5")
print(t5_path)
# Import all the necessary functions from the original script
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
try:
return obj[index]
except KeyError:
return obj["result"][index]
# Add all the necessary setup functions from the original script
def find_path(name: str, path: str = None) -> str:
if path is None:
path = os.getcwd()
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
parent_directory = os.path.dirname(path)
if parent_directory == path:
return None
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
try:
from main import load_extra_path_config
except ImportError:
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
# Initialize paths
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
def import_custom_nodes() -> None:
import asyncio
import execution
from nodes import init_extra_nodes
import server
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
init_extra_nodes()
# Import all necessary nodes
from nodes import (
StyleModelLoader,
VAEEncode,
NODE_CLASS_MAPPINGS,
LoadImage,
CLIPVisionLoader,
SaveImage,
VAELoader,
CLIPVisionEncode,
DualCLIPLoader,
EmptyLatentImage,
VAEDecode,
UNETLoader,
CLIPTextEncode,
)
# Initialize all constant nodes and models in global context
import_custom_nodes()
# Global variables for preloaded models and constants
#with torch.inference_mode():
# Initialize constants
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
CONST_1024 = intconstant.get_value(value=1024)
# Load CLIP
dualcliploader = DualCLIPLoader()
CLIP_MODEL = dualcliploader.load_clip(
clip_name1="t5/t5xxl_fp16.safetensors",
clip_name2="clip_l.safetensors",
type="flux",
)
# Load VAE
vaeloader = VAELoader()
VAE_MODEL = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors")
# Load UNET
unetloader = UNETLoader()
UNET_MODEL = unetloader.load_unet(
unet_name="flux1-depth-dev.safetensors", weight_dtype="default"
)
# Load CLIP Vision
clipvisionloader = CLIPVisionLoader()
CLIP_VISION_MODEL = clipvisionloader.load_clip(
clip_name="sigclip_vision_patch14_384.safetensors"
)
# Load Style Model
stylemodelloader = StyleModelLoader()
STYLE_MODEL = stylemodelloader.load_style_model(
style_model_name="flux1-redux-dev.safetensors"
)
# Initialize samplers
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
SAMPLER = ksamplerselect.get_sampler(sampler_name="euler")
# Initialize depth model
cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]()
downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS["DownloadAndLoadDepthAnythingV2Model"]()
DEPTH_MODEL = downloadandloaddepthanythingv2model.loadmodel(
model="depth_anything_v2_vitl_fp32.safetensors"
)
cliptextencode = CLIPTextEncode()
loadimage = LoadImage()
vaeencode = VAEEncode()
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
instructpixtopixconditioning = NODE_CLASS_MAPPINGS["InstructPixToPixConditioning"]()
clipvisionencode = CLIPVisionEncode()
stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]()
emptylatentimage = EmptyLatentImage()
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
vaedecode = VAEDecode()
cr_text = NODE_CLASS_MAPPINGS["CR Text"]()
saveimage = SaveImage()
getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]()
depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]()
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]()
@spaces.GPU
def generate_image(prompt, structure_image, style_image, depth_strength=15, style_strength=0.5, progress=gr.Progress(track_tqdm=True)) -> str:
"""Main generation function that processes inputs and returns the path to the generated image."""
with torch.inference_mode():
# Set up CLIP
clip_switch = cr_clip_input_switch.switch(
Input=1,
clip1=get_value_at_index(CLIP_MODEL, 0),
clip2=get_value_at_index(CLIP_MODEL, 0),
)
# Encode text
text_encoded = cliptextencode.encode(
text=prompt,
clip=get_value_at_index(clip_switch, 0),
)
empty_text = cliptextencode.encode(
text="",
clip=get_value_at_index(clip_switch, 0),
)
# Process structure image
structure_img = loadimage.load_image(image=structure_image)
# Resize image
resized_img = imageresize.execute(
width=get_value_at_index(CONST_1024, 0),
height=get_value_at_index(CONST_1024, 0),
interpolation="bicubic",
method="keep proportion",
condition="always",
multiple_of=16,
image=get_value_at_index(structure_img, 0),
)
# Get image size
size_info = getimagesizeandcount.getsize(
image=get_value_at_index(resized_img, 0)
)
# Encode VAE
vae_encoded = vaeencode.encode(
pixels=get_value_at_index(size_info, 0),
vae=get_value_at_index(VAE_MODEL, 0),
)
# Process depth
depth_processed = depthanything_v2.process(
da_model=get_value_at_index(DEPTH_MODEL, 0),
images=get_value_at_index(size_info, 0),
)
# Apply Flux guidance
flux_guided = fluxguidance.append(
guidance=depth_strength,
conditioning=get_value_at_index(text_encoded, 0),
)
# Process style image
style_img = loadimage.load_image(image=style_image)
# Encode style with CLIP Vision
style_encoded = clipvisionencode.encode(
crop="center",
clip_vision=get_value_at_index(CLIP_VISION_MODEL, 0),
image=get_value_at_index(style_img, 0),
)
# Set up conditioning
conditioning = instructpixtopixconditioning.encode(
positive=get_value_at_index(flux_guided, 0),
negative=get_value_at_index(empty_text, 0),
vae=get_value_at_index(VAE_MODEL, 0),
pixels=get_value_at_index(depth_processed, 0),
)
# Apply style
style_applied = stylemodelapplyadvanced.apply_stylemodel(
strength=style_strength,
conditioning=get_value_at_index(conditioning, 0),
style_model=get_value_at_index(STYLE_MODEL, 0),
clip_vision_output=get_value_at_index(style_encoded, 0),
)
# Set up empty latent
empty_latent = emptylatentimage.generate(
width=get_value_at_index(resized_img, 1),
height=get_value_at_index(resized_img, 2),
batch_size=1,
)
# Set up guidance
guided = basicguider.get_guider(
model=get_value_at_index(UNET_MODEL, 0),
conditioning=get_value_at_index(style_applied, 0),
)
# Set up scheduler
schedule = basicscheduler.get_sigmas(
scheduler="simple",
steps=28,
denoise=1,
model=get_value_at_index(UNET_MODEL, 0),
)
# Generate random noise
noise = randomnoise.get_noise(noise_seed=random.randint(1, 2**64))
# Sample
sampled = samplercustomadvanced.sample(
noise=get_value_at_index(noise, 0),
guider=get_value_at_index(guided, 0),
sampler=get_value_at_index(SAMPLER, 0),
sigmas=get_value_at_index(schedule, 0),
latent_image=get_value_at_index(empty_latent, 0),
)
# Decode VAE
decoded = vaedecode.decode(
samples=get_value_at_index(sampled, 0),
vae=get_value_at_index(VAE_MODEL, 0),
)
# Save image
prefix = cr_text.text_multiline(text="Flux_BFL_Depth_Redux")
saved = saveimage.save_images(
filename_prefix=get_value_at_index(prefix, 0),
images=get_value_at_index(decoded, 0),
)
saved_path = f"output/{saved['ui']['images'][0]['filename']}"
print(saved_path)
return saved_path
# Create Gradio interface
examples = [
["", "mona.png", "receita-tacos.webp", 15, 0.6],
["a woman looking at a house catching fire on the background", "disaster_girl.png", "abaporu.jpg", 15, 0.15],
["istanbul aerial, dramatic photography", "natasha.png", "istambul.jpg", 15, 0.5],
]
output_image = gr.Image(label="Generated Image")
with gr.Blocks() as app:
gr.Markdown("# FLUX Style Shaping")
gr.Markdown("Flux[dev] Redux + Flux[dev] Depth ComfyUI workflow by [Nathan Shipley](https://x.com/CitizenPlain) running directly on Gradio. [workflow](https://gist.github.com/nathanshipley/7a9ac1901adde76feebe58d558026f68) - [how to convert your any comfy workflow to gradio (soon)](#)")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
with gr.Row():
with gr.Group():
structure_image = gr.Image(label="Structure Image", type="filepath")
depth_strength = gr.Slider(minimum=0, maximum=50, value=15, label="Depth Strength")
with gr.Group():
style_image = gr.Image(label="Style Image", type="filepath")
style_strength = gr.Slider(minimum=0, maximum=1, value=0.5, label="Style Strength")
generate_btn = gr.Button("Generate")
gr.Examples(
examples=examples,
inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength],
outputs=[output_image],
fn=generate_image,
cache_examples=True,
cache_mode="eager"
)
with gr.Column():
output_image.render()
generate_btn.click(
fn=generate_image,
inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength],
outputs=[output_image]
)
if __name__ == "__main__":
app.launch(share=True)