|
|
|
|
|
|
|
from typing import Dict, List, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
|
|
from comfy.ldm.modules.attention import optimized_attention |
|
|
|
from .layers import ( |
|
FeedForward, |
|
PatchEmbed, |
|
RMSNorm, |
|
TimestepEmbedder, |
|
) |
|
|
|
from .rope_mixed import ( |
|
compute_mixed_rotation, |
|
create_position_matrix, |
|
) |
|
from .temporal_rope import apply_rotary_emb_qk_real |
|
from .utils import ( |
|
AttentionPool, |
|
modulate, |
|
) |
|
|
|
import comfy.ldm.common_dit |
|
import comfy.ops |
|
|
|
|
|
def modulated_rmsnorm(x, scale, eps=1e-6): |
|
|
|
x_normed = comfy.ldm.common_dit.rms_norm(x, eps=eps) |
|
x_modulated = x_normed * (1 + scale.unsqueeze(1)) |
|
|
|
return x_modulated |
|
|
|
|
|
def residual_tanh_gated_rmsnorm(x, x_res, gate, eps=1e-6): |
|
|
|
tanh_gate = torch.tanh(gate).unsqueeze(1) |
|
|
|
|
|
x_normed = comfy.ldm.common_dit.rms_norm(x_res, eps=eps) * tanh_gate |
|
|
|
|
|
output = x + x_normed |
|
|
|
return output |
|
|
|
class AsymmetricAttention(nn.Module): |
|
def __init__( |
|
self, |
|
dim_x: int, |
|
dim_y: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = True, |
|
qk_norm: bool = False, |
|
attn_drop: float = 0.0, |
|
update_y: bool = True, |
|
out_bias: bool = True, |
|
attend_to_padding: bool = False, |
|
softmax_scale: Optional[float] = None, |
|
device: Optional[torch.device] = None, |
|
dtype=None, |
|
operations=None, |
|
): |
|
super().__init__() |
|
self.dim_x = dim_x |
|
self.dim_y = dim_y |
|
self.num_heads = num_heads |
|
self.head_dim = dim_x // num_heads |
|
self.attn_drop = attn_drop |
|
self.update_y = update_y |
|
self.attend_to_padding = attend_to_padding |
|
self.softmax_scale = softmax_scale |
|
if dim_x % num_heads != 0: |
|
raise ValueError( |
|
f"dim_x={dim_x} should be divisible by num_heads={num_heads}" |
|
) |
|
|
|
|
|
self.qkv_bias = qkv_bias |
|
self.qkv_x = operations.Linear(dim_x, 3 * dim_x, bias=qkv_bias, device=device, dtype=dtype) |
|
|
|
self.qkv_y = operations.Linear(dim_y, 3 * dim_x, bias=qkv_bias, device=device, dtype=dtype) |
|
|
|
|
|
assert qk_norm |
|
self.q_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype) |
|
self.k_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype) |
|
self.q_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype) |
|
self.k_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype) |
|
|
|
|
|
self.proj_x = operations.Linear(dim_x, dim_x, bias=out_bias, device=device, dtype=dtype) |
|
self.proj_y = ( |
|
operations.Linear(dim_x, dim_y, bias=out_bias, device=device, dtype=dtype) |
|
if update_y |
|
else nn.Identity() |
|
) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
y: torch.Tensor, |
|
scale_x: torch.Tensor, |
|
scale_y: torch.Tensor, |
|
crop_y, |
|
**rope_rotation, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
rope_cos = rope_rotation.get("rope_cos") |
|
rope_sin = rope_rotation.get("rope_sin") |
|
|
|
x = modulated_rmsnorm(x, scale_x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y = modulated_rmsnorm(y, scale_y) |
|
q_y, k_y, v_y = self.qkv_y(y).view(y.shape[0], y.shape[1], 3, self.num_heads, -1).unbind(2) |
|
|
|
q_y = self.q_norm_y(q_y) |
|
k_y = self.k_norm_y(k_y) |
|
|
|
|
|
q_x, k_x, v_x = self.qkv_x(x).view(x.shape[0], x.shape[1], 3, self.num_heads, -1).unbind(2) |
|
q_x = self.q_norm_x(q_x) |
|
q_x = apply_rotary_emb_qk_real(q_x, rope_cos, rope_sin) |
|
k_x = self.k_norm_x(k_x) |
|
k_x = apply_rotary_emb_qk_real(k_x, rope_cos, rope_sin) |
|
|
|
q = torch.cat([q_x, q_y[:, :crop_y]], dim=1).transpose(1, 2) |
|
k = torch.cat([k_x, k_y[:, :crop_y]], dim=1).transpose(1, 2) |
|
v = torch.cat([v_x, v_y[:, :crop_y]], dim=1).transpose(1, 2) |
|
|
|
xy = optimized_attention(q, |
|
k, |
|
v, self.num_heads, skip_reshape=True) |
|
|
|
x, y = torch.tensor_split(xy, (q_x.shape[1],), dim=1) |
|
x = self.proj_x(x) |
|
o = torch.zeros(y.shape[0], q_y.shape[1], y.shape[-1], device=y.device, dtype=y.dtype) |
|
o[:, :y.shape[1]] = y |
|
|
|
y = self.proj_y(o) |
|
|
|
|
|
return x, y |
|
|
|
|
|
class AsymmetricJointBlock(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size_x: int, |
|
hidden_size_y: int, |
|
num_heads: int, |
|
*, |
|
mlp_ratio_x: float = 8.0, |
|
mlp_ratio_y: float = 4.0, |
|
update_y: bool = True, |
|
device: Optional[torch.device] = None, |
|
dtype=None, |
|
operations=None, |
|
**block_kwargs, |
|
): |
|
super().__init__() |
|
self.update_y = update_y |
|
self.hidden_size_x = hidden_size_x |
|
self.hidden_size_y = hidden_size_y |
|
self.mod_x = operations.Linear(hidden_size_x, 4 * hidden_size_x, device=device, dtype=dtype) |
|
if self.update_y: |
|
self.mod_y = operations.Linear(hidden_size_x, 4 * hidden_size_y, device=device, dtype=dtype) |
|
else: |
|
self.mod_y = operations.Linear(hidden_size_x, hidden_size_y, device=device, dtype=dtype) |
|
|
|
|
|
self.attn = AsymmetricAttention( |
|
hidden_size_x, |
|
hidden_size_y, |
|
num_heads=num_heads, |
|
update_y=update_y, |
|
device=device, |
|
dtype=dtype, |
|
operations=operations, |
|
**block_kwargs, |
|
) |
|
|
|
|
|
mlp_hidden_dim_x = int(hidden_size_x * mlp_ratio_x) |
|
assert mlp_hidden_dim_x == int(1536 * 8) |
|
self.mlp_x = FeedForward( |
|
in_features=hidden_size_x, |
|
hidden_size=mlp_hidden_dim_x, |
|
multiple_of=256, |
|
ffn_dim_multiplier=None, |
|
device=device, |
|
dtype=dtype, |
|
operations=operations, |
|
) |
|
|
|
|
|
if self.update_y: |
|
mlp_hidden_dim_y = int(hidden_size_y * mlp_ratio_y) |
|
self.mlp_y = FeedForward( |
|
in_features=hidden_size_y, |
|
hidden_size=mlp_hidden_dim_y, |
|
multiple_of=256, |
|
ffn_dim_multiplier=None, |
|
device=device, |
|
dtype=dtype, |
|
operations=operations, |
|
) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
c: torch.Tensor, |
|
y: torch.Tensor, |
|
**attn_kwargs, |
|
): |
|
"""Forward pass of a block. |
|
|
|
Args: |
|
x: (B, N, dim) tensor of visual tokens |
|
c: (B, dim) tensor of conditioned features |
|
y: (B, L, dim) tensor of text tokens |
|
num_frames: Number of frames in the video. N = num_frames * num_spatial_tokens |
|
|
|
Returns: |
|
x: (B, N, dim) tensor of visual tokens after block |
|
y: (B, L, dim) tensor of text tokens after block |
|
""" |
|
N = x.size(1) |
|
|
|
c = F.silu(c) |
|
mod_x = self.mod_x(c) |
|
scale_msa_x, gate_msa_x, scale_mlp_x, gate_mlp_x = mod_x.chunk(4, dim=1) |
|
|
|
mod_y = self.mod_y(c) |
|
if self.update_y: |
|
scale_msa_y, gate_msa_y, scale_mlp_y, gate_mlp_y = mod_y.chunk(4, dim=1) |
|
else: |
|
scale_msa_y = mod_y |
|
|
|
|
|
x_attn, y_attn = self.attn( |
|
x, |
|
y, |
|
scale_x=scale_msa_x, |
|
scale_y=scale_msa_y, |
|
**attn_kwargs, |
|
) |
|
|
|
assert x_attn.size(1) == N |
|
x = residual_tanh_gated_rmsnorm(x, x_attn, gate_msa_x) |
|
if self.update_y: |
|
y = residual_tanh_gated_rmsnorm(y, y_attn, gate_msa_y) |
|
|
|
|
|
x = self.ff_block_x(x, scale_mlp_x, gate_mlp_x) |
|
if self.update_y: |
|
y = self.ff_block_y(y, scale_mlp_y, gate_mlp_y) |
|
|
|
return x, y |
|
|
|
def ff_block_x(self, x, scale_x, gate_x): |
|
x_mod = modulated_rmsnorm(x, scale_x) |
|
x_res = self.mlp_x(x_mod) |
|
x = residual_tanh_gated_rmsnorm(x, x_res, gate_x) |
|
return x |
|
|
|
def ff_block_y(self, y, scale_y, gate_y): |
|
y_mod = modulated_rmsnorm(y, scale_y) |
|
y_res = self.mlp_y(y_mod) |
|
y = residual_tanh_gated_rmsnorm(y, y_res, gate_y) |
|
return y |
|
|
|
|
|
class FinalLayer(nn.Module): |
|
""" |
|
The final layer of DiT. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size, |
|
patch_size, |
|
out_channels, |
|
device: Optional[torch.device] = None, |
|
dtype=None, |
|
operations=None, |
|
): |
|
super().__init__() |
|
self.norm_final = operations.LayerNorm( |
|
hidden_size, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype |
|
) |
|
self.mod = operations.Linear(hidden_size, 2 * hidden_size, device=device, dtype=dtype) |
|
self.linear = operations.Linear( |
|
hidden_size, patch_size * patch_size * out_channels, device=device, dtype=dtype |
|
) |
|
|
|
def forward(self, x, c): |
|
c = F.silu(c) |
|
shift, scale = self.mod(c).chunk(2, dim=1) |
|
x = modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class AsymmDiTJoint(nn.Module): |
|
""" |
|
Diffusion model with a Transformer backbone. |
|
|
|
Ingests text embeddings instead of a label. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
patch_size=2, |
|
in_channels=4, |
|
hidden_size_x=1152, |
|
hidden_size_y=1152, |
|
depth=48, |
|
num_heads=16, |
|
mlp_ratio_x=8.0, |
|
mlp_ratio_y=4.0, |
|
use_t5: bool = False, |
|
t5_feat_dim: int = 4096, |
|
t5_token_length: int = 256, |
|
learn_sigma=True, |
|
patch_embed_bias: bool = True, |
|
timestep_mlp_bias: bool = True, |
|
attend_to_padding: bool = False, |
|
timestep_scale: Optional[float] = None, |
|
use_extended_posenc: bool = False, |
|
posenc_preserve_area: bool = False, |
|
rope_theta: float = 10000.0, |
|
image_model=None, |
|
device: Optional[torch.device] = None, |
|
dtype=None, |
|
operations=None, |
|
**block_kwargs, |
|
): |
|
super().__init__() |
|
|
|
self.dtype = dtype |
|
self.learn_sigma = learn_sigma |
|
self.in_channels = in_channels |
|
self.out_channels = in_channels * 2 if learn_sigma else in_channels |
|
self.patch_size = patch_size |
|
self.num_heads = num_heads |
|
self.hidden_size_x = hidden_size_x |
|
self.hidden_size_y = hidden_size_y |
|
self.head_dim = ( |
|
hidden_size_x // num_heads |
|
) |
|
self.attend_to_padding = attend_to_padding |
|
self.use_extended_posenc = use_extended_posenc |
|
self.posenc_preserve_area = posenc_preserve_area |
|
self.use_t5 = use_t5 |
|
self.t5_token_length = t5_token_length |
|
self.t5_feat_dim = t5_feat_dim |
|
self.rope_theta = ( |
|
rope_theta |
|
) |
|
|
|
self.x_embedder = PatchEmbed( |
|
patch_size=patch_size, |
|
in_chans=in_channels, |
|
embed_dim=hidden_size_x, |
|
bias=patch_embed_bias, |
|
dtype=dtype, |
|
device=device, |
|
operations=operations |
|
) |
|
|
|
|
|
self.t_embedder = TimestepEmbedder( |
|
hidden_size_x, bias=timestep_mlp_bias, timestep_scale=timestep_scale, dtype=dtype, device=device, operations=operations |
|
) |
|
|
|
if self.use_t5: |
|
|
|
self.t5_y_embedder = AttentionPool( |
|
t5_feat_dim, num_heads=8, output_dim=hidden_size_x, dtype=dtype, device=device, operations=operations |
|
) |
|
|
|
|
|
self.t5_yproj = operations.Linear( |
|
t5_feat_dim, hidden_size_y, bias=True, dtype=dtype, device=device |
|
) |
|
|
|
|
|
self.pos_frequencies = nn.Parameter( |
|
torch.empty(3, self.num_heads, self.head_dim // 2, dtype=dtype, device=device) |
|
) |
|
|
|
assert not self.attend_to_padding |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
blocks = [] |
|
for b in range(depth): |
|
|
|
update_y = b < depth - 1 |
|
block = AsymmetricJointBlock( |
|
hidden_size_x, |
|
hidden_size_y, |
|
num_heads, |
|
mlp_ratio_x=mlp_ratio_x, |
|
mlp_ratio_y=mlp_ratio_y, |
|
update_y=update_y, |
|
attend_to_padding=attend_to_padding, |
|
device=device, |
|
dtype=dtype, |
|
operations=operations, |
|
**block_kwargs, |
|
) |
|
|
|
blocks.append(block) |
|
self.blocks = nn.ModuleList(blocks) |
|
|
|
self.final_layer = FinalLayer( |
|
hidden_size_x, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations |
|
) |
|
|
|
def embed_x(self, x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Args: |
|
x: (B, C=12, T, H, W) tensor of visual tokens |
|
|
|
Returns: |
|
x: (B, C=3072, N) tensor of visual tokens with positional embedding. |
|
""" |
|
return self.x_embedder(x) |
|
|
|
def prepare( |
|
self, |
|
x: torch.Tensor, |
|
sigma: torch.Tensor, |
|
t5_feat: torch.Tensor, |
|
t5_mask: torch.Tensor, |
|
): |
|
"""Prepare input and conditioning embeddings.""" |
|
|
|
T, H, W = x.shape[-3:] |
|
pH, pW = H // self.patch_size, W // self.patch_size |
|
x = self.embed_x(x) |
|
assert x.ndim == 3 |
|
B = x.size(0) |
|
|
|
|
|
pH, pW = H // self.patch_size, W // self.patch_size |
|
N = T * pH * pW |
|
assert x.size(1) == N |
|
pos = create_position_matrix( |
|
T, pH=pH, pW=pW, device=x.device, dtype=torch.float32 |
|
) |
|
rope_cos, rope_sin = compute_mixed_rotation( |
|
freqs=comfy.ops.cast_to(self.pos_frequencies, dtype=x.dtype, device=x.device), pos=pos |
|
) |
|
|
|
c_t = self.t_embedder(1 - sigma, out_dtype=x.dtype) |
|
|
|
t5_y_pool = self.t5_y_embedder(t5_feat, t5_mask) |
|
|
|
c = c_t + t5_y_pool |
|
|
|
y_feat = self.t5_yproj(t5_feat) |
|
|
|
return x, c, y_feat, rope_cos, rope_sin |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
timestep: torch.Tensor, |
|
context: List[torch.Tensor], |
|
attention_mask: List[torch.Tensor], |
|
num_tokens=256, |
|
packed_indices: Dict[str, torch.Tensor] = None, |
|
rope_cos: torch.Tensor = None, |
|
rope_sin: torch.Tensor = None, |
|
control=None, transformer_options={}, **kwargs |
|
): |
|
patches_replace = transformer_options.get("patches_replace", {}) |
|
y_feat = context |
|
y_mask = attention_mask |
|
sigma = timestep |
|
"""Forward pass of DiT. |
|
|
|
Args: |
|
x: (B, C, T, H, W) tensor of spatial inputs (images or latent representations of images) |
|
sigma: (B,) tensor of noise standard deviations |
|
y_feat: List((B, L, y_feat_dim) tensor of caption token features. For SDXL text encoders: L=77, y_feat_dim=2048) |
|
y_mask: List((B, L) boolean tensor indicating which tokens are not padding) |
|
packed_indices: Dict with keys for Flash Attention. Result of compute_packed_indices. |
|
""" |
|
B, _, T, H, W = x.shape |
|
|
|
x, c, y_feat, rope_cos, rope_sin = self.prepare( |
|
x, sigma, y_feat, y_mask |
|
) |
|
del y_mask |
|
|
|
blocks_replace = patches_replace.get("dit", {}) |
|
for i, block in enumerate(self.blocks): |
|
if ("double_block", i) in blocks_replace: |
|
def block_wrap(args): |
|
out = {} |
|
out["img"], out["txt"] = block( |
|
args["img"], |
|
args["vec"], |
|
args["txt"], |
|
rope_cos=args["rope_cos"], |
|
rope_sin=args["rope_sin"], |
|
crop_y=args["num_tokens"] |
|
) |
|
return out |
|
out = blocks_replace[("double_block", i)]({"img": x, "txt": y_feat, "vec": c, "rope_cos": rope_cos, "rope_sin": rope_sin, "num_tokens": num_tokens}, {"original_block": block_wrap}) |
|
y_feat = out["txt"] |
|
x = out["img"] |
|
else: |
|
x, y_feat = block( |
|
x, |
|
c, |
|
y_feat, |
|
rope_cos=rope_cos, |
|
rope_sin=rope_sin, |
|
crop_y=num_tokens, |
|
) |
|
del y_feat |
|
|
|
x = self.final_layer(x, c) |
|
x = rearrange( |
|
x, |
|
"B (T hp wp) (p1 p2 c) -> B c T (hp p1) (wp p2)", |
|
T=T, |
|
hp=H // self.patch_size, |
|
wp=W // self.patch_size, |
|
p1=self.patch_size, |
|
p2=self.patch_size, |
|
c=self.out_channels, |
|
) |
|
|
|
return -x |
|
|