|
|
|
|
|
|
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
def modulate(x, shift, scale): |
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) |
|
|
|
|
|
def pool_tokens(x: torch.Tensor, mask: torch.Tensor, *, keepdim=False) -> torch.Tensor: |
|
""" |
|
Pool tokens in x using mask. |
|
|
|
NOTE: We assume x does not require gradients. |
|
|
|
Args: |
|
x: (B, L, D) tensor of tokens. |
|
mask: (B, L) boolean tensor indicating which tokens are not padding. |
|
|
|
Returns: |
|
pooled: (B, D) tensor of pooled tokens. |
|
""" |
|
assert x.size(1) == mask.size(1) |
|
assert x.size(0) == mask.size(0) |
|
mask = mask[:, :, None].to(dtype=x.dtype) |
|
mask = mask / mask.sum(dim=1, keepdim=True).clamp(min=1) |
|
pooled = (x * mask).sum(dim=1, keepdim=keepdim) |
|
return pooled |
|
|
|
|
|
class AttentionPool(nn.Module): |
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
num_heads: int, |
|
output_dim: int = None, |
|
device: Optional[torch.device] = None, |
|
dtype=None, |
|
operations=None, |
|
): |
|
""" |
|
Args: |
|
spatial_dim (int): Number of tokens in sequence length. |
|
embed_dim (int): Dimensionality of input tokens. |
|
num_heads (int): Number of attention heads. |
|
output_dim (int): Dimensionality of output tokens. Defaults to embed_dim. |
|
""" |
|
super().__init__() |
|
self.num_heads = num_heads |
|
self.to_kv = operations.Linear(embed_dim, 2 * embed_dim, device=device, dtype=dtype) |
|
self.to_q = operations.Linear(embed_dim, embed_dim, device=device, dtype=dtype) |
|
self.to_out = operations.Linear(embed_dim, output_dim or embed_dim, device=device, dtype=dtype) |
|
|
|
def forward(self, x, mask): |
|
""" |
|
Args: |
|
x (torch.Tensor): (B, L, D) tensor of input tokens. |
|
mask (torch.Tensor): (B, L) boolean tensor indicating which tokens are not padding. |
|
|
|
NOTE: We assume x does not require gradients. |
|
|
|
Returns: |
|
x (torch.Tensor): (B, D) tensor of pooled tokens. |
|
""" |
|
D = x.size(2) |
|
|
|
|
|
attn_mask = mask[:, None, None, :].bool() |
|
attn_mask = F.pad(attn_mask, (1, 0), value=True) |
|
|
|
|
|
x_pool = pool_tokens(x, mask, keepdim=True) |
|
|
|
|
|
x = torch.cat([x_pool, x], dim=1) |
|
|
|
|
|
kv = self.to_kv(x) |
|
q = self.to_q(x[:, 0]) |
|
|
|
|
|
head_dim = D // self.num_heads |
|
kv = kv.unflatten(2, (2, self.num_heads, head_dim)) |
|
kv = kv.transpose(1, 3) |
|
k, v = kv.unbind(2) |
|
q = q.unflatten(1, (self.num_heads, head_dim)) |
|
q = q.unsqueeze(2) |
|
|
|
|
|
x = F.scaled_dot_product_attention( |
|
q, k, v, attn_mask=attn_mask, dropout_p=0.0 |
|
) |
|
|
|
|
|
x = x.squeeze(2).flatten(1, 2) |
|
x = self.to_out(x) |
|
return x |
|
|