|
import folder_paths |
|
import comfy.sd |
|
import comfy.model_management |
|
import nodes |
|
import torch |
|
import comfy_extras.nodes_slg |
|
|
|
|
|
class TripleCLIPLoader: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ), "clip_name2": (folder_paths.get_filename_list("text_encoders"), ), "clip_name3": (folder_paths.get_filename_list("text_encoders"), ) |
|
}} |
|
RETURN_TYPES = ("CLIP",) |
|
FUNCTION = "load_clip" |
|
|
|
CATEGORY = "advanced/loaders" |
|
|
|
DESCRIPTION = "[Recipes]\n\nsd3: clip-l, clip-g, t5" |
|
|
|
def load_clip(self, clip_name1, clip_name2, clip_name3): |
|
clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", clip_name1) |
|
clip_path2 = folder_paths.get_full_path_or_raise("text_encoders", clip_name2) |
|
clip_path3 = folder_paths.get_full_path_or_raise("text_encoders", clip_name3) |
|
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2, clip_path3], embedding_directory=folder_paths.get_folder_paths("embeddings")) |
|
return (clip,) |
|
|
|
|
|
class EmptySD3LatentImage: |
|
def __init__(self): |
|
self.device = comfy.model_management.intermediate_device() |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "width": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), |
|
"height": ("INT", {"default": 1024, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), |
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} |
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "generate" |
|
|
|
CATEGORY = "latent/sd3" |
|
|
|
def generate(self, width, height, batch_size=1): |
|
latent = torch.zeros([batch_size, 16, height // 8, width // 8], device=self.device) |
|
return ({"samples":latent}, ) |
|
|
|
|
|
class CLIPTextEncodeSD3: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"clip": ("CLIP", ), |
|
"clip_l": ("STRING", {"multiline": True, "dynamicPrompts": True}), |
|
"clip_g": ("STRING", {"multiline": True, "dynamicPrompts": True}), |
|
"t5xxl": ("STRING", {"multiline": True, "dynamicPrompts": True}), |
|
"empty_padding": (["none", "empty_prompt"], ) |
|
}} |
|
RETURN_TYPES = ("CONDITIONING",) |
|
FUNCTION = "encode" |
|
|
|
CATEGORY = "advanced/conditioning" |
|
|
|
def encode(self, clip, clip_l, clip_g, t5xxl, empty_padding): |
|
no_padding = empty_padding == "none" |
|
|
|
tokens = clip.tokenize(clip_g) |
|
if len(clip_g) == 0 and no_padding: |
|
tokens["g"] = [] |
|
|
|
if len(clip_l) == 0 and no_padding: |
|
tokens["l"] = [] |
|
else: |
|
tokens["l"] = clip.tokenize(clip_l)["l"] |
|
|
|
if len(t5xxl) == 0 and no_padding: |
|
tokens["t5xxl"] = [] |
|
else: |
|
tokens["t5xxl"] = clip.tokenize(t5xxl)["t5xxl"] |
|
if len(tokens["l"]) != len(tokens["g"]): |
|
empty = clip.tokenize("") |
|
while len(tokens["l"]) < len(tokens["g"]): |
|
tokens["l"] += empty["l"] |
|
while len(tokens["l"]) > len(tokens["g"]): |
|
tokens["g"] += empty["g"] |
|
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True) |
|
return ([[cond, {"pooled_output": pooled}]], ) |
|
|
|
|
|
class ControlNetApplySD3(nodes.ControlNetApplyAdvanced): |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"positive": ("CONDITIONING", ), |
|
"negative": ("CONDITIONING", ), |
|
"control_net": ("CONTROL_NET", ), |
|
"vae": ("VAE", ), |
|
"image": ("IMAGE", ), |
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}) |
|
}} |
|
CATEGORY = "conditioning/controlnet" |
|
DEPRECATED = True |
|
|
|
|
|
class SkipLayerGuidanceSD3(comfy_extras.nodes_slg.SkipLayerGuidanceDiT): |
|
''' |
|
Enhance guidance towards detailed dtructure by having another set of CFG negative with skipped layers. |
|
Inspired by Perturbed Attention Guidance (https://arxiv.org/abs/2403.17377) |
|
Experimental implementation by Dango233@StabilityAI. |
|
''' |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"model": ("MODEL", ), |
|
"layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), |
|
"scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 10.0, "step": 0.1}), |
|
"start_percent": ("FLOAT", {"default": 0.01, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"end_percent": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001}) |
|
}} |
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "skip_guidance_sd3" |
|
|
|
CATEGORY = "advanced/guidance" |
|
|
|
def skip_guidance_sd3(self, model, layers, scale, start_percent, end_percent): |
|
return self.skip_guidance(model=model, scale=scale, start_percent=start_percent, end_percent=end_percent, double_layers=layers) |
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"TripleCLIPLoader": TripleCLIPLoader, |
|
"EmptySD3LatentImage": EmptySD3LatentImage, |
|
"CLIPTextEncodeSD3": CLIPTextEncodeSD3, |
|
"ControlNetApplySD3": ControlNetApplySD3, |
|
"SkipLayerGuidanceSD3": SkipLayerGuidanceSD3, |
|
} |
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
|
|
"ControlNetApplySD3": "Apply Controlnet with VAE", |
|
} |
|
|