|
from nodes import MAX_RESOLUTION, ConditioningZeroOut, ConditioningSetTimestepRange, ConditioningCombine |
|
import re |
|
|
|
class CLIPTextEncodeSDXLSimplified: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"width": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), |
|
"height": ("INT", {"default": 1024.0, "min": 0, "max": MAX_RESOLUTION}), |
|
"size_cond_factor": ("INT", {"default": 4, "min": 1, "max": 16 }), |
|
"text": ("STRING", {"multiline": True, "dynamicPrompts": True, "default": ""}), |
|
"clip": ("CLIP", ), |
|
}} |
|
RETURN_TYPES = ("CONDITIONING",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/conditioning" |
|
|
|
def execute(self, clip, width, height, size_cond_factor, text): |
|
crop_w = 0 |
|
crop_h = 0 |
|
width = width*size_cond_factor |
|
height = height*size_cond_factor |
|
target_width = width |
|
target_height = height |
|
text_g = text_l = text |
|
|
|
tokens = clip.tokenize(text_g) |
|
tokens["l"] = clip.tokenize(text_l)["l"] |
|
if len(tokens["l"]) != len(tokens["g"]): |
|
empty = clip.tokenize("") |
|
while len(tokens["l"]) < len(tokens["g"]): |
|
tokens["l"] += empty["l"] |
|
while len(tokens["l"]) > len(tokens["g"]): |
|
tokens["g"] += empty["g"] |
|
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True) |
|
return ([[cond, {"pooled_output": pooled, "width": width, "height": height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]], ) |
|
|
|
class ConditioningCombineMultiple: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"conditioning_1": ("CONDITIONING",), |
|
"conditioning_2": ("CONDITIONING",), |
|
}, "optional": { |
|
"conditioning_3": ("CONDITIONING",), |
|
"conditioning_4": ("CONDITIONING",), |
|
"conditioning_5": ("CONDITIONING",), |
|
}, |
|
} |
|
RETURN_TYPES = ("CONDITIONING",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/conditioning" |
|
|
|
def execute(self, conditioning_1, conditioning_2, conditioning_3=None, conditioning_4=None, conditioning_5=None): |
|
c = conditioning_1 + conditioning_2 |
|
|
|
if conditioning_3 is not None: |
|
c += conditioning_3 |
|
if conditioning_4 is not None: |
|
c += conditioning_4 |
|
if conditioning_5 is not None: |
|
c += conditioning_5 |
|
|
|
return (c,) |
|
|
|
class SD3NegativeConditioning: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"conditioning": ("CONDITIONING",), |
|
"end": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.001 }), |
|
}} |
|
RETURN_TYPES = ("CONDITIONING",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/conditioning" |
|
|
|
def execute(self, conditioning, end): |
|
zero_c = ConditioningZeroOut().zero_out(conditioning)[0] |
|
|
|
if end == 0: |
|
return (zero_c, ) |
|
|
|
c = ConditioningSetTimestepRange().set_range(conditioning, 0, end)[0] |
|
zero_c = ConditioningSetTimestepRange().set_range(zero_c, end, 1.0)[0] |
|
c = ConditioningCombine().combine(zero_c, c)[0] |
|
|
|
return (c, ) |
|
|
|
class FluxAttentionSeeker: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"clip": ("CLIP",), |
|
"apply_to_query": ("BOOLEAN", { "default": True }), |
|
"apply_to_key": ("BOOLEAN", { "default": True }), |
|
"apply_to_value": ("BOOLEAN", { "default": True }), |
|
"apply_to_out": ("BOOLEAN", { "default": True }), |
|
**{f"clip_l_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(12)}, |
|
**{f"t5xxl_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(24)}, |
|
}} |
|
|
|
RETURN_TYPES = ("CLIP",) |
|
FUNCTION = "execute" |
|
|
|
CATEGORY = "essentials/conditioning" |
|
|
|
def execute(self, clip, apply_to_query, apply_to_key, apply_to_value, apply_to_out, **values): |
|
if not apply_to_key and not apply_to_query and not apply_to_value and not apply_to_out: |
|
return (clip, ) |
|
|
|
m = clip.clone() |
|
sd = m.patcher.model_state_dict() |
|
|
|
for k in sd: |
|
if "self_attn" in k: |
|
layer = re.search(r"\.layers\.(\d+)\.", k) |
|
layer = int(layer.group(1)) if layer else None |
|
|
|
if layer is not None and values[f"clip_l_{layer}"] != 1.0: |
|
if (apply_to_query and "q_proj" in k) or (apply_to_key and "k_proj" in k) or (apply_to_value and "v_proj" in k) or (apply_to_out and "out_proj" in k): |
|
m.add_patches({k: (None,)}, 0.0, values[f"clip_l_{layer}"]) |
|
elif "SelfAttention" in k: |
|
block = re.search(r"\.block\.(\d+)\.", k) |
|
block = int(block.group(1)) if block else None |
|
|
|
if block is not None and values[f"t5xxl_{block}"] != 1.0: |
|
if (apply_to_query and ".q." in k) or (apply_to_key and ".k." in k) or (apply_to_value and ".v." in k) or (apply_to_out and ".o." in k): |
|
m.add_patches({k: (None,)}, 0.0, values[f"t5xxl_{block}"]) |
|
|
|
return (m, ) |
|
|
|
class SD3AttentionSeekerLG: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"clip": ("CLIP",), |
|
"apply_to_query": ("BOOLEAN", { "default": True }), |
|
"apply_to_key": ("BOOLEAN", { "default": True }), |
|
"apply_to_value": ("BOOLEAN", { "default": True }), |
|
"apply_to_out": ("BOOLEAN", { "default": True }), |
|
**{f"clip_l_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(12)}, |
|
**{f"clip_g_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(32)}, |
|
}} |
|
|
|
RETURN_TYPES = ("CLIP",) |
|
FUNCTION = "execute" |
|
|
|
CATEGORY = "essentials/conditioning" |
|
|
|
def execute(self, clip, apply_to_query, apply_to_key, apply_to_value, apply_to_out, **values): |
|
if not apply_to_key and not apply_to_query and not apply_to_value and not apply_to_out: |
|
return (clip, ) |
|
|
|
m = clip.clone() |
|
sd = m.patcher.model_state_dict() |
|
|
|
for k in sd: |
|
if "self_attn" in k: |
|
layer = re.search(r"\.layers\.(\d+)\.", k) |
|
layer = int(layer.group(1)) if layer else None |
|
|
|
if layer is not None: |
|
if "clip_l" in k and values[f"clip_l_{layer}"] != 1.0: |
|
if (apply_to_query and "q_proj" in k) or (apply_to_key and "k_proj" in k) or (apply_to_value and "v_proj" in k) or (apply_to_out and "out_proj" in k): |
|
m.add_patches({k: (None,)}, 0.0, values[f"clip_l_{layer}"]) |
|
elif "clip_g" in k and values[f"clip_g_{layer}"] != 1.0: |
|
if (apply_to_query and "q_proj" in k) or (apply_to_key and "k_proj" in k) or (apply_to_value and "v_proj" in k) or (apply_to_out and "out_proj" in k): |
|
m.add_patches({k: (None,)}, 0.0, values[f"clip_g_{layer}"]) |
|
|
|
return (m, ) |
|
|
|
class SD3AttentionSeekerT5: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"clip": ("CLIP",), |
|
"apply_to_query": ("BOOLEAN", { "default": True }), |
|
"apply_to_key": ("BOOLEAN", { "default": True }), |
|
"apply_to_value": ("BOOLEAN", { "default": True }), |
|
"apply_to_out": ("BOOLEAN", { "default": True }), |
|
**{f"t5xxl_{s}": ("FLOAT", { "display": "slider", "default": 1.0, "min": 0, "max": 5, "step": 0.05 }) for s in range(24)}, |
|
}} |
|
|
|
RETURN_TYPES = ("CLIP",) |
|
FUNCTION = "execute" |
|
|
|
CATEGORY = "essentials/conditioning" |
|
|
|
def execute(self, clip, apply_to_query, apply_to_key, apply_to_value, apply_to_out, **values): |
|
if not apply_to_key and not apply_to_query and not apply_to_value and not apply_to_out: |
|
return (clip, ) |
|
|
|
m = clip.clone() |
|
sd = m.patcher.model_state_dict() |
|
|
|
for k in sd: |
|
if "SelfAttention" in k: |
|
block = re.search(r"\.block\.(\d+)\.", k) |
|
block = int(block.group(1)) if block else None |
|
|
|
if block is not None and values[f"t5xxl_{block}"] != 1.0: |
|
if (apply_to_query and ".q." in k) or (apply_to_key and ".k." in k) or (apply_to_value and ".v." in k) or (apply_to_out and ".o." in k): |
|
m.add_patches({k: (None,)}, 0.0, values[f"t5xxl_{block}"]) |
|
|
|
return (m, ) |
|
|
|
class FluxBlocksBuster: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"model": ("MODEL",), |
|
"blocks": ("STRING", {"default": "## 0 = 1.0\n## 1 = 1.0\n## 2 = 1.0\n## 3 = 1.0\n## 4 = 1.0\n## 5 = 1.0\n## 6 = 1.0\n## 7 = 1.0\n## 8 = 1.0\n## 9 = 1.0\n## 10 = 1.0\n## 11 = 1.0\n## 12 = 1.0\n## 13 = 1.0\n## 14 = 1.0\n## 15 = 1.0\n## 16 = 1.0\n## 17 = 1.0\n## 18 = 1.0\n# 0 = 1.0\n# 1 = 1.0\n# 2 = 1.0\n# 3 = 1.0\n# 4 = 1.0\n# 5 = 1.0\n# 6 = 1.0\n# 7 = 1.0\n# 8 = 1.0\n# 9 = 1.0\n# 10 = 1.0\n# 11 = 1.0\n# 12 = 1.0\n# 13 = 1.0\n# 14 = 1.0\n# 15 = 1.0\n# 16 = 1.0\n# 17 = 1.0\n# 18 = 1.0\n# 19 = 1.0\n# 20 = 1.0\n# 21 = 1.0\n# 22 = 1.0\n# 23 = 1.0\n# 24 = 1.0\n# 25 = 1.0\n# 26 = 1.0\n# 27 = 1.0\n# 28 = 1.0\n# 29 = 1.0\n# 30 = 1.0\n# 31 = 1.0\n# 32 = 1.0\n# 33 = 1.0\n# 34 = 1.0\n# 35 = 1.0\n# 36 = 1.0\n# 37 = 1.0", "multiline": True, "dynamicPrompts": True}), |
|
|
|
|
|
}} |
|
RETURN_TYPES = ("MODEL", "STRING") |
|
RETURN_NAMES = ("MODEL", "patched_blocks") |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "essentials/conditioning" |
|
|
|
def patch(self, model, blocks): |
|
if blocks == "": |
|
return (model, ) |
|
|
|
m = model.clone() |
|
sd = model.model_state_dict() |
|
patched_blocks = [] |
|
|
|
""" |
|
Also compatible with the following format: |
|
|
|
double_blocks\.0\.(img|txt)_(mod|attn|mlp)\.(lin|qkv|proj|0|2)\.(weight|bias)=1.1 |
|
single_blocks\.0\.(linear[12]|modulation\.lin)\.(weight|bias)=1.1 |
|
|
|
The regex is used to match the block names |
|
""" |
|
|
|
blocks = blocks.split("\n") |
|
blocks = [b.strip() for b in blocks if b.strip()] |
|
|
|
for k in sd: |
|
for block in blocks: |
|
block = block.split("=") |
|
value = float(block[1].strip()) if len(block) > 1 else 1.0 |
|
block = block[0].strip() |
|
if block.startswith("##"): |
|
block = r"double_blocks\." + block[2:].strip() + r"\.(img|txt)_(mod|attn|mlp)\.(lin|qkv|proj|0|2)\.(weight|bias)" |
|
elif block.startswith("#"): |
|
block = r"single_blocks\." + block[1:].strip() + r"\.(linear[12]|modulation\.lin)\.(weight|bias)" |
|
|
|
if value != 1.0 and re.search(block, k): |
|
m.add_patches({k: (None,)}, 0.0, value) |
|
patched_blocks.append(f"{k}: {value}") |
|
|
|
patched_blocks = "\n".join(patched_blocks) |
|
|
|
return (m, patched_blocks,) |
|
|
|
|
|
COND_CLASS_MAPPINGS = { |
|
"CLIPTextEncodeSDXL+": CLIPTextEncodeSDXLSimplified, |
|
"ConditioningCombineMultiple+": ConditioningCombineMultiple, |
|
"SD3NegativeConditioning+": SD3NegativeConditioning, |
|
"FluxAttentionSeeker+": FluxAttentionSeeker, |
|
"SD3AttentionSeekerLG+": SD3AttentionSeekerLG, |
|
"SD3AttentionSeekerT5+": SD3AttentionSeekerT5, |
|
"FluxBlocksBuster+": FluxBlocksBuster, |
|
} |
|
|
|
COND_NAME_MAPPINGS = { |
|
"CLIPTextEncodeSDXL+": "π§ SDXL CLIPTextEncode", |
|
"ConditioningCombineMultiple+": "π§ Cond Combine Multiple", |
|
"SD3NegativeConditioning+": "π§ SD3 Negative Conditioning", |
|
"FluxAttentionSeeker+": "π§ Flux Attention Seeker", |
|
"SD3AttentionSeekerLG+": "π§ SD3 Attention Seeker L/G", |
|
"SD3AttentionSeekerT5+": "π§ SD3 Attention Seeker T5", |
|
"FluxBlocksBuster+": "π§ Flux Model Blocks Buster", |
|
} |