Spaces:
ginipick
/
Running on Zero

StyleGen / app.py
aiqtech's picture
Update app.py
69f2337 verified
raw
history blame
13.6 kB
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from PIL import Image
from huggingface_hub import hf_hub_download, login
import spaces
# Hugging Face ํ† ํฐ์œผ๋กœ ๋กœ๊ทธ์ธ
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("Please set the HF_TOKEN environment variable")
login(token=HF_TOKEN)
# ์ดํ›„ ๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ
hf_hub_download(
repo_id="black-forest-labs/FLUX.1-Redux-dev",
filename="flux1-redux-dev.safetensors",
local_dir="models/style_models",
token=HF_TOKEN
)
hf_hub_download(
repo_id="black-forest-labs/FLUX.1-Depth-dev",
filename="flux1-depth-dev.safetensors",
local_dir="models/diffusion_models",
token=HF_TOKEN
)
hf_hub_download(
repo_id="Comfy-Org/sigclip_vision_384",
filename="sigclip_vision_patch14_384.safetensors",
local_dir="models/clip_vision",
token=HF_TOKEN
)
hf_hub_download(
repo_id="Kijai/DepthAnythingV2-safetensors",
filename="depth_anything_v2_vitl_fp32.safetensors",
local_dir="models/depthanything",
token=HF_TOKEN
)
hf_hub_download(
repo_id="black-forest-labs/FLUX.1-dev",
filename="ae.safetensors",
local_dir="models/vae/FLUX1",
token=HF_TOKEN
)
hf_hub_download(
repo_id="comfyanonymous/flux_text_encoders",
filename="clip_l.safetensors",
local_dir="models/text_encoders",
token=HF_TOKEN
)
t5_path = hf_hub_download(
repo_id="comfyanonymous/flux_text_encoders",
filename="t5xxl_fp16.safetensors",
local_dir="models/text_encoders/t5",
token=HF_TOKEN
)
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
if path is None:
path = os.getcwd()
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
parent_directory = os.path.dirname(path)
if parent_directory == path:
return None
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
try:
from main import load_extra_path_config
except ImportError:
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
# Initialize paths
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
def import_custom_nodes() -> None:
import asyncio
import execution
from nodes import init_extra_nodes
import server
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
init_extra_nodes()
# Import all necessary nodes
from nodes import (
StyleModelLoader,
VAEEncode,
NODE_CLASS_MAPPINGS,
LoadImage,
CLIPVisionLoader,
SaveImage,
VAELoader,
CLIPVisionEncode,
DualCLIPLoader,
EmptyLatentImage,
VAEDecode,
UNETLoader,
CLIPTextEncode,
)
# Initialize all constant nodes and models in global context
import_custom_nodes()
# Global variables for preloaded models and constants
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
CONST_1024 = intconstant.get_value(value=1024)
# Load CLIP
dualcliploader = DualCLIPLoader()
CLIP_MODEL = dualcliploader.load_clip(
clip_name1="t5/t5xxl_fp16.safetensors",
clip_name2="clip_l.safetensors",
type="flux",
)
# Load VAE
vaeloader = VAELoader()
VAE_MODEL = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors")
# Load UNET
unetloader = UNETLoader()
UNET_MODEL = unetloader.load_unet(
unet_name="flux1-depth-dev.safetensors", weight_dtype="default"
)
# Load CLIP Vision
clipvisionloader = CLIPVisionLoader()
CLIP_VISION_MODEL = clipvisionloader.load_clip(
clip_name="sigclip_vision_patch14_384.safetensors"
)
# Load Style Model
stylemodelloader = StyleModelLoader()
STYLE_MODEL = stylemodelloader.load_style_model(
style_model_name="flux1-redux-dev.safetensors"
)
# Initialize samplers
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
SAMPLER = ksamplerselect.get_sampler(sampler_name="euler")
# Initialize depth model
cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]()
downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS["DownloadAndLoadDepthAnythingV2Model"]()
DEPTH_MODEL = downloadandloaddepthanythingv2model.loadmodel(
model="depth_anything_v2_vitl_fp32.safetensors"
)
# Initialize other nodes
cliptextencode = CLIPTextEncode()
loadimage = LoadImage()
vaeencode = VAEEncode()
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
instructpixtopixconditioning = NODE_CLASS_MAPPINGS["InstructPixToPixConditioning"]()
clipvisionencode = CLIPVisionEncode()
stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]()
emptylatentimage = EmptyLatentImage()
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
vaedecode = VAEDecode()
cr_text = NODE_CLASS_MAPPINGS["CR Text"]()
saveimage = SaveImage()
getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]()
depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]()
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]()
@spaces.GPU
def generate_image(prompt, structure_image, style_image, depth_strength=15, style_strength=0.5, progress=gr.Progress(track_tqdm=True)) -> str:
"""Main generation function that processes inputs and returns the path to the generated image."""
with torch.inference_mode():
# Set up CLIP
clip_switch = cr_clip_input_switch.switch(
Input=1,
clip1=get_value_at_index(CLIP_MODEL, 0),
clip2=get_value_at_index(CLIP_MODEL, 0),
)
# Encode text
text_encoded = cliptextencode.encode(
text=prompt,
clip=get_value_at_index(clip_switch, 0),
)
empty_text = cliptextencode.encode(
text="",
clip=get_value_at_index(clip_switch, 0),
)
# Process structure image
structure_img = loadimage.load_image(image=structure_image)
# Resize image
resized_img = imageresize.execute(
width=get_value_at_index(CONST_1024, 0),
height=get_value_at_index(CONST_1024, 0),
interpolation="bicubic",
method="keep proportion",
condition="always",
multiple_of=16,
image=get_value_at_index(structure_img, 0),
)
# Get image size
size_info = getimagesizeandcount.getsize(
image=get_value_at_index(resized_img, 0)
)
# Encode VAE
vae_encoded = vaeencode.encode(
pixels=get_value_at_index(size_info, 0),
vae=get_value_at_index(VAE_MODEL, 0),
)
# Process depth
depth_processed = depthanything_v2.process(
da_model=get_value_at_index(DEPTH_MODEL, 0),
images=get_value_at_index(size_info, 0),
)
# Apply Flux guidance
flux_guided = fluxguidance.append(
guidance=depth_strength,
conditioning=get_value_at_index(text_encoded, 0),
)
# Process style image
style_img = loadimage.load_image(image=style_image)
# Encode style with CLIP Vision
style_encoded = clipvisionencode.encode(
crop="center",
clip_vision=get_value_at_index(CLIP_VISION_MODEL, 0),
image=get_value_at_index(style_img, 0),
)
# Set up conditioning
conditioning = instructpixtopixconditioning.encode(
positive=get_value_at_index(flux_guided, 0),
negative=get_value_at_index(empty_text, 0),
vae=get_value_at_index(VAE_MODEL, 0),
pixels=get_value_at_index(depth_processed, 0),
)
# Apply style
style_applied = stylemodelapplyadvanced.apply_stylemodel(
strength=style_strength,
conditioning=get_value_at_index(conditioning, 0),
style_model=get_value_at_index(STYLE_MODEL, 0),
clip_vision_output=get_value_at_index(style_encoded, 0),
)
# Set up empty latent
empty_latent = emptylatentimage.generate(
width=get_value_at_index(resized_img, 1),
height=get_value_at_index(resized_img, 2),
batch_size=1,
)
# Set up guidance
guided = basicguider.get_guider(
model=get_value_at_index(UNET_MODEL, 0),
conditioning=get_value_at_index(style_applied, 0),
)
# Set up scheduler
schedule = basicscheduler.get_sigmas(
scheduler="simple",
steps=28,
denoise=1,
model=get_value_at_index(UNET_MODEL, 0),
)
# Generate random noise
noise = randomnoise.get_noise(noise_seed=random.randint(1, 2**64))
# Sample
sampled = samplercustomadvanced.sample(
noise=get_value_at_index(noise, 0),
guider=get_value_at_index(guided, 0),
sampler=get_value_at_index(SAMPLER, 0),
sigmas=get_value_at_index(schedule, 0),
latent_image=get_value_at_index(empty_latent, 0),
)
# Decode VAE
decoded = vaedecode.decode(
samples=get_value_at_index(sampled, 0),
vae=get_value_at_index(VAE_MODEL, 0),
)
# Save image
prefix = cr_text.text_multiline(text="Virtual_TryOn")
saved = saveimage.save_images(
filename_prefix=get_value_at_index(prefix, 0),
images=get_value_at_index(decoded, 0),
)
saved_path = f"output/{saved['ui']['images'][0]['filename']}"
return saved_path
output_image = gr.Image(label="Virtual Try-On Result")
# Create Gradio interface
examples = [
["person wearing fashionable clothing", "f1.webp", "f11.webp", 15, 0.6],
["person wearing elegant dress", "f2.webp", "f21.webp", 15, 0.5],
["person wearing casual outfit", "f3.webp", "f31.webp", 15, 0.5],
]
# Gradio ์ธํ„ฐํŽ˜์ด์Šค ์ƒ์„ฑ
demo = gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange")
with demo:
gr.Markdown("# ๐ŸŽญ StyleGen : Fashion AI Studio")
gr.Markdown("Generate fashion images and try on virtual clothing using AI")
with gr.Tabs():
# Virtual Try-On ํƒญ
with gr.TabItem("๐Ÿ‘” Virtual Try-On"):
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Style Description",
placeholder="Describe the desired style (e.g., 'person wearing elegant dress')"
)
with gr.Row():
with gr.Group():
structure_image = gr.Image(
label="Your Photo (Full-body)",
type="filepath"
)
gr.Markdown("*Upload a clear, well-lit full-body photo*")
depth_strength = gr.Slider(
minimum=0,
maximum=50,
value=15,
label="Fitting Strength"
)
with gr.Group():
style_image = gr.Image(
label="Clothing Item",
type="filepath"
)
gr.Markdown("*Upload the clothing item you want to try on*")
style_strength = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
label="Style Transfer Strength"
)
with gr.Column():
output_image = gr.Image(label="Virtual Try-On Result")
generate_button = gr.Button("Generate Try-On")
gr.Examples(
examples=examples,
inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength],
outputs=output_image,
fn=generate_image,
cache_examples=False
)
# Connect the button to the generation function
generate_button.click(
fn=generate_image,
inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength],
outputs=output_image
)
if __name__ == "__main__":
demo.launch(share=True)