|
import torchaudio |
|
import torch |
|
import comfy.model_management |
|
import folder_paths |
|
import os |
|
import io |
|
import json |
|
import struct |
|
import random |
|
import hashlib |
|
from comfy.cli_args import args |
|
|
|
class EmptyLatentAudio: |
|
def __init__(self): |
|
self.device = comfy.model_management.intermediate_device() |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1}), |
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}), |
|
}} |
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "generate" |
|
|
|
CATEGORY = "latent/audio" |
|
|
|
def generate(self, seconds, batch_size): |
|
length = round((seconds * 44100 / 2048) / 2) * 2 |
|
latent = torch.zeros([batch_size, 64, length], device=self.device) |
|
return ({"samples":latent, "type": "audio"}, ) |
|
|
|
class VAEEncodeAudio: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "audio": ("AUDIO", ), "vae": ("VAE", )}} |
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "encode" |
|
|
|
CATEGORY = "latent/audio" |
|
|
|
def encode(self, vae, audio): |
|
sample_rate = audio["sample_rate"] |
|
if 44100 != sample_rate: |
|
waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100) |
|
else: |
|
waveform = audio["waveform"] |
|
|
|
t = vae.encode(waveform.movedim(1, -1)) |
|
return ({"samples":t}, ) |
|
|
|
class VAEDecodeAudio: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}} |
|
RETURN_TYPES = ("AUDIO",) |
|
FUNCTION = "decode" |
|
|
|
CATEGORY = "latent/audio" |
|
|
|
def decode(self, vae, samples): |
|
audio = vae.decode(samples["samples"]).movedim(-1, 1) |
|
std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0 |
|
std[std < 1.0] = 1.0 |
|
audio /= std |
|
return ({"waveform": audio, "sample_rate": 44100}, ) |
|
|
|
|
|
def create_vorbis_comment_block(comment_dict, last_block): |
|
vendor_string = b'ComfyUI' |
|
vendor_length = len(vendor_string) |
|
|
|
comments = [] |
|
for key, value in comment_dict.items(): |
|
comment = f"{key}={value}".encode('utf-8') |
|
comments.append(struct.pack('<I', len(comment)) + comment) |
|
|
|
user_comment_list_length = len(comments) |
|
user_comments = b''.join(comments) |
|
|
|
comment_data = struct.pack('<I', vendor_length) + vendor_string + struct.pack('<I', user_comment_list_length) + user_comments |
|
if last_block: |
|
id = b'\x84' |
|
else: |
|
id = b'\x04' |
|
comment_block = id + struct.pack('>I', len(comment_data))[1:] + comment_data |
|
|
|
return comment_block |
|
|
|
def insert_or_replace_vorbis_comment(flac_io, comment_dict): |
|
if len(comment_dict) == 0: |
|
return flac_io |
|
|
|
flac_io.seek(4) |
|
|
|
blocks = [] |
|
last_block = False |
|
|
|
while not last_block: |
|
header = flac_io.read(4) |
|
last_block = (header[0] & 0x80) != 0 |
|
block_type = header[0] & 0x7F |
|
block_length = struct.unpack('>I', b'\x00' + header[1:])[0] |
|
block_data = flac_io.read(block_length) |
|
|
|
if block_type == 4 or block_type == 1: |
|
pass |
|
else: |
|
header = bytes([(header[0] & (~0x80))]) + header[1:] |
|
blocks.append(header + block_data) |
|
|
|
blocks.append(create_vorbis_comment_block(comment_dict, last_block=True)) |
|
|
|
new_flac_io = io.BytesIO() |
|
new_flac_io.write(b'fLaC') |
|
for block in blocks: |
|
new_flac_io.write(block) |
|
|
|
new_flac_io.write(flac_io.read()) |
|
return new_flac_io |
|
|
|
|
|
class SaveAudio: |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_output_directory() |
|
self.type = "output" |
|
self.prefix_append = "" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "audio": ("AUDIO", ), |
|
"filename_prefix": ("STRING", {"default": "audio/ComfyUI"})}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, |
|
} |
|
|
|
RETURN_TYPES = () |
|
FUNCTION = "save_audio" |
|
|
|
OUTPUT_NODE = True |
|
|
|
CATEGORY = "audio" |
|
|
|
def save_audio(self, audio, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): |
|
filename_prefix += self.prefix_append |
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) |
|
results = list() |
|
|
|
metadata = {} |
|
if not args.disable_metadata: |
|
if prompt is not None: |
|
metadata["prompt"] = json.dumps(prompt) |
|
if extra_pnginfo is not None: |
|
for x in extra_pnginfo: |
|
metadata[x] = json.dumps(extra_pnginfo[x]) |
|
|
|
for (batch_number, waveform) in enumerate(audio["waveform"].cpu()): |
|
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number)) |
|
file = f"{filename_with_batch_num}_{counter:05}_.flac" |
|
|
|
buff = io.BytesIO() |
|
torchaudio.save(buff, waveform, audio["sample_rate"], format="FLAC") |
|
|
|
buff = insert_or_replace_vorbis_comment(buff, metadata) |
|
|
|
with open(os.path.join(full_output_folder, file), 'wb') as f: |
|
f.write(buff.getbuffer()) |
|
|
|
results.append({ |
|
"filename": file, |
|
"subfolder": subfolder, |
|
"type": self.type |
|
}) |
|
counter += 1 |
|
|
|
return { "ui": { "audio": results } } |
|
|
|
class PreviewAudio(SaveAudio): |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_temp_directory() |
|
self.type = "temp" |
|
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{"audio": ("AUDIO", ), }, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, |
|
} |
|
|
|
class LoadAudio: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
input_dir = folder_paths.get_input_directory() |
|
files = folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"]) |
|
return {"required": {"audio": (sorted(files), {"audio_upload": True})}} |
|
|
|
CATEGORY = "audio" |
|
|
|
RETURN_TYPES = ("AUDIO", ) |
|
FUNCTION = "load" |
|
|
|
def load(self, audio): |
|
audio_path = folder_paths.get_annotated_filepath(audio) |
|
waveform, sample_rate = torchaudio.load(audio_path) |
|
audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate} |
|
return (audio, ) |
|
|
|
@classmethod |
|
def IS_CHANGED(s, audio): |
|
image_path = folder_paths.get_annotated_filepath(audio) |
|
m = hashlib.sha256() |
|
with open(image_path, 'rb') as f: |
|
m.update(f.read()) |
|
return m.digest().hex() |
|
|
|
@classmethod |
|
def VALIDATE_INPUTS(s, audio): |
|
if not folder_paths.exists_annotated_filepath(audio): |
|
return "Invalid audio file: {}".format(audio) |
|
return True |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"EmptyLatentAudio": EmptyLatentAudio, |
|
"VAEEncodeAudio": VAEEncodeAudio, |
|
"VAEDecodeAudio": VAEDecodeAudio, |
|
"SaveAudio": SaveAudio, |
|
"LoadAudio": LoadAudio, |
|
"PreviewAudio": PreviewAudio, |
|
} |
|
|