|
import os |
|
import logging |
|
from spandrel import ModelLoader, ImageModelDescriptor |
|
from comfy import model_management |
|
import torch |
|
import comfy.utils |
|
import folder_paths |
|
|
|
try: |
|
from spandrel_extra_arches import EXTRA_REGISTRY |
|
from spandrel import MAIN_REGISTRY |
|
MAIN_REGISTRY.add(*EXTRA_REGISTRY) |
|
logging.info("Successfully imported spandrel_extra_arches: support for non commercial upscale models.") |
|
except: |
|
pass |
|
|
|
class UpscaleModelLoader: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model_name": (folder_paths.get_filename_list("upscale_models"), ), |
|
}} |
|
RETURN_TYPES = ("UPSCALE_MODEL",) |
|
FUNCTION = "load_model" |
|
|
|
CATEGORY = "loaders" |
|
|
|
def load_model(self, model_name): |
|
model_path = folder_paths.get_full_path_or_raise("upscale_models", model_name) |
|
sd = comfy.utils.load_torch_file(model_path, safe_load=True) |
|
if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd: |
|
sd = comfy.utils.state_dict_prefix_replace(sd, {"module.":""}) |
|
out = ModelLoader().load_from_state_dict(sd).eval() |
|
|
|
if not isinstance(out, ImageModelDescriptor): |
|
raise Exception("Upscale model must be a single-image model.") |
|
|
|
return (out, ) |
|
|
|
|
|
class ImageUpscaleWithModel: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "upscale_model": ("UPSCALE_MODEL",), |
|
"image": ("IMAGE",), |
|
}} |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "upscale" |
|
|
|
CATEGORY = "image/upscaling" |
|
|
|
def upscale(self, upscale_model, image): |
|
device = model_management.get_torch_device() |
|
|
|
memory_required = model_management.module_size(upscale_model.model) |
|
memory_required += (512 * 512 * 3) * image.element_size() * max(upscale_model.scale, 1.0) * 384.0 |
|
memory_required += image.nelement() * image.element_size() |
|
model_management.free_memory(memory_required, device) |
|
|
|
upscale_model.to(device) |
|
in_img = image.movedim(-1,-3).to(device) |
|
|
|
tile = 512 |
|
overlap = 32 |
|
|
|
oom = True |
|
while oom: |
|
try: |
|
steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap) |
|
pbar = comfy.utils.ProgressBar(steps) |
|
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar) |
|
oom = False |
|
except model_management.OOM_EXCEPTION as e: |
|
tile //= 2 |
|
if tile < 128: |
|
raise e |
|
|
|
upscale_model.to("cpu") |
|
s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0) |
|
return (s,) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"UpscaleModelLoader": UpscaleModelLoader, |
|
"ImageUpscaleWithModel": ImageUpscaleWithModel |
|
} |
|
|