|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
from comfy_extras.chainner_models import model_loading |
|
from comfy import model_management |
|
import numpy as np |
|
import comfy.utils |
|
import folder_paths |
|
from PIL import Image |
|
|
|
|
|
def pil2tensor(image): |
|
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0) |
|
|
|
|
|
def tensor2pil(image): |
|
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) |
|
|
|
def load_model(model_name): |
|
model_path = folder_paths.get_full_path("upscale_models", model_name) |
|
sd = comfy.utils.load_torch_file(model_path, safe_load=True) |
|
if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd: |
|
sd = comfy.utils.state_dict_prefix_replace(sd, {"module.":""}) |
|
out = model_loading.load_state_dict(sd).eval() |
|
return out |
|
|
|
def upscale_with_model(upscale_model, image): |
|
device = model_management.get_torch_device() |
|
upscale_model.to(device) |
|
in_img = image.movedim(-1,-3).to(device) |
|
free_memory = model_management.get_free_memory(device) |
|
|
|
tile = 512 |
|
overlap = 32 |
|
|
|
oom = True |
|
while oom: |
|
try: |
|
steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap) |
|
pbar = comfy.utils.ProgressBar(steps) |
|
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar) |
|
oom = False |
|
except model_management.OOM_EXCEPTION as e: |
|
tile //= 2 |
|
if tile < 128: |
|
raise e |
|
|
|
upscale_model.cpu() |
|
s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0) |
|
return s |
|
|
|
def apply_resize_image(image: Image.Image, original_width, original_height, rounding_modulus, mode='scale', supersample='true', factor: int = 2, width: int = 1024, height: int = 1024, resample='bicubic'): |
|
|
|
|
|
if mode == 'rescale': |
|
new_width, new_height = int(original_width * factor), int(original_height * factor) |
|
else: |
|
m = rounding_modulus |
|
original_ratio = original_height / original_width |
|
height = int(width * original_ratio) |
|
|
|
new_width = width if width % m == 0 else width + (m - width % m) |
|
new_height = height if height % m == 0 else height + (m - height % m) |
|
|
|
|
|
resample_filters = {'nearest': 0, 'bilinear': 2, 'bicubic': 3, 'lanczos': 1} |
|
|
|
|
|
if supersample == 'true': |
|
image = image.resize((new_width * 8, new_height * 8), resample=Image.Resampling(resample_filters[resample])) |
|
|
|
|
|
resized_image = image.resize((new_width, new_height), resample=Image.Resampling(resample_filters[resample])) |
|
|
|
return resized_image |
|
|
|
|
|
|