|
from .utils import max_, min_ |
|
from nodes import MAX_RESOLUTION |
|
import comfy.utils |
|
from nodes import SaveImage |
|
from node_helpers import pillow |
|
from PIL import Image, ImageOps |
|
|
|
import kornia |
|
import torch |
|
import torch.nn.functional as F |
|
import torchvision.transforms.v2 as T |
|
|
|
|
|
|
|
import math |
|
import os |
|
import numpy as np |
|
import folder_paths |
|
from pathlib import Path |
|
import random |
|
|
|
""" |
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
Image analysis |
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
""" |
|
|
|
class ImageEnhanceDifference: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image1": ("IMAGE",), |
|
"image2": ("IMAGE",), |
|
"exponent": ("FLOAT", { "default": 0.75, "min": 0.00, "max": 1.00, "step": 0.05, }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image analysis" |
|
|
|
def execute(self, image1, image2, exponent): |
|
if image1.shape[1:] != image2.shape[1:]: |
|
image2 = comfy.utils.common_upscale(image2.permute([0,3,1,2]), image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1]) |
|
|
|
diff_image = image1 - image2 |
|
diff_image = torch.pow(diff_image, exponent) |
|
diff_image = torch.clamp(diff_image, 0, 1) |
|
|
|
return(diff_image,) |
|
|
|
""" |
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
Batch tools |
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
""" |
|
|
|
class ImageBatchMultiple: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image_1": ("IMAGE",), |
|
"method": (["nearest-exact", "bilinear", "area", "bicubic", "lanczos"], { "default": "lanczos" }), |
|
}, "optional": { |
|
"image_2": ("IMAGE",), |
|
"image_3": ("IMAGE",), |
|
"image_4": ("IMAGE",), |
|
"image_5": ("IMAGE",), |
|
}, |
|
} |
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image batch" |
|
|
|
def execute(self, image_1, method, image_2=None, image_3=None, image_4=None, image_5=None): |
|
out = image_1 |
|
|
|
if image_2 is not None: |
|
if image_1.shape[1:] != image_2.shape[1:]: |
|
image_2 = comfy.utils.common_upscale(image_2.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1) |
|
out = torch.cat((image_1, image_2), dim=0) |
|
if image_3 is not None: |
|
if image_1.shape[1:] != image_3.shape[1:]: |
|
image_3 = comfy.utils.common_upscale(image_3.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1) |
|
out = torch.cat((out, image_3), dim=0) |
|
if image_4 is not None: |
|
if image_1.shape[1:] != image_4.shape[1:]: |
|
image_4 = comfy.utils.common_upscale(image_4.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1) |
|
out = torch.cat((out, image_4), dim=0) |
|
if image_5 is not None: |
|
if image_1.shape[1:] != image_5.shape[1:]: |
|
image_5 = comfy.utils.common_upscale(image_5.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1) |
|
out = torch.cat((out, image_5), dim=0) |
|
|
|
return (out,) |
|
|
|
|
|
class ImageExpandBatch: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"size": ("INT", { "default": 16, "min": 1, "step": 1, }), |
|
"method": (["expand", "repeat all", "repeat first", "repeat last"],) |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image batch" |
|
|
|
def execute(self, image, size, method): |
|
orig_size = image.shape[0] |
|
|
|
if orig_size == size: |
|
return (image,) |
|
|
|
if size <= 1: |
|
return (image[:size],) |
|
|
|
if 'expand' in method: |
|
out = torch.empty([size] + list(image.shape)[1:], dtype=image.dtype, device=image.device) |
|
if size < orig_size: |
|
scale = (orig_size - 1) / (size - 1) |
|
for i in range(size): |
|
out[i] = image[min(round(i * scale), orig_size - 1)] |
|
else: |
|
scale = orig_size / size |
|
for i in range(size): |
|
out[i] = image[min(math.floor((i + 0.5) * scale), orig_size - 1)] |
|
elif 'all' in method: |
|
out = image.repeat([math.ceil(size / image.shape[0])] + [1] * (len(image.shape) - 1))[:size] |
|
elif 'first' in method: |
|
if size < image.shape[0]: |
|
out = image[:size] |
|
else: |
|
out = torch.cat([image[:1].repeat(size-image.shape[0], 1, 1, 1), image], dim=0) |
|
elif 'last' in method: |
|
if size < image.shape[0]: |
|
out = image[:size] |
|
else: |
|
out = torch.cat((image, image[-1:].repeat((size-image.shape[0], 1, 1, 1))), dim=0) |
|
|
|
return (out,) |
|
|
|
class ImageFromBatch: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE", ), |
|
"start": ("INT", { "default": 0, "min": 0, "step": 1, }), |
|
"length": ("INT", { "default": -1, "min": -1, "step": 1, }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image batch" |
|
|
|
def execute(self, image, start, length): |
|
if length<0: |
|
length = image.shape[0] |
|
start = min(start, image.shape[0]-1) |
|
length = min(image.shape[0]-start, length) |
|
return (image[start:start + length], ) |
|
|
|
|
|
class ImageListToBatch: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
INPUT_IS_LIST = True |
|
CATEGORY = "essentials/image batch" |
|
|
|
def execute(self, image): |
|
shape = image[0].shape[1:3] |
|
out = [] |
|
|
|
for i in range(len(image)): |
|
img = image[i] |
|
if image[i].shape[1:3] != shape: |
|
img = comfy.utils.common_upscale(img.permute([0,3,1,2]), shape[1], shape[0], upscale_method='bicubic', crop='center').permute([0,2,3,1]) |
|
out.append(img) |
|
|
|
out = torch.cat(out, dim=0) |
|
|
|
return (out,) |
|
|
|
class ImageBatchToList: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
OUTPUT_IS_LIST = (True,) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image batch" |
|
|
|
def execute(self, image): |
|
return ([image[i].unsqueeze(0) for i in range(image.shape[0])], ) |
|
|
|
|
|
""" |
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
Image manipulation |
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
""" |
|
|
|
class ImageCompositeFromMaskBatch: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image_from": ("IMAGE", ), |
|
"image_to": ("IMAGE", ), |
|
"mask": ("MASK", ) |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image manipulation" |
|
|
|
def execute(self, image_from, image_to, mask): |
|
frames = mask.shape[0] |
|
|
|
if image_from.shape[1] != image_to.shape[1] or image_from.shape[2] != image_to.shape[2]: |
|
image_to = comfy.utils.common_upscale(image_to.permute([0,3,1,2]), image_from.shape[2], image_from.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1]) |
|
|
|
if frames < image_from.shape[0]: |
|
image_from = image_from[:frames] |
|
elif frames > image_from.shape[0]: |
|
image_from = torch.cat((image_from, image_from[-1].unsqueeze(0).repeat(frames-image_from.shape[0], 1, 1, 1)), dim=0) |
|
|
|
mask = mask.unsqueeze(3).repeat(1, 1, 1, 3) |
|
|
|
if image_from.shape[1] != mask.shape[1] or image_from.shape[2] != mask.shape[2]: |
|
mask = comfy.utils.common_upscale(mask.permute([0,3,1,2]), image_from.shape[2], image_from.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1]) |
|
|
|
out = mask * image_to + (1 - mask) * image_from |
|
|
|
return (out, ) |
|
|
|
class ImageComposite: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"destination": ("IMAGE",), |
|
"source": ("IMAGE",), |
|
"x": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }), |
|
"y": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }), |
|
"offset_x": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }), |
|
"offset_y": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }), |
|
}, |
|
"optional": { |
|
"mask": ("MASK",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image manipulation" |
|
|
|
def execute(self, destination, source, x, y, offset_x, offset_y, mask=None): |
|
if mask is None: |
|
mask = torch.ones_like(source)[:,:,:,0] |
|
|
|
mask = mask.unsqueeze(-1).repeat(1, 1, 1, 3) |
|
|
|
if mask.shape[1:3] != source.shape[1:3]: |
|
mask = F.interpolate(mask.permute([0, 3, 1, 2]), size=(source.shape[1], source.shape[2]), mode='bicubic') |
|
mask = mask.permute([0, 2, 3, 1]) |
|
|
|
if mask.shape[0] > source.shape[0]: |
|
mask = mask[:source.shape[0]] |
|
elif mask.shape[0] < source.shape[0]: |
|
mask = torch.cat((mask, mask[-1:].repeat((source.shape[0]-mask.shape[0], 1, 1, 1))), dim=0) |
|
|
|
if destination.shape[0] > source.shape[0]: |
|
destination = destination[:source.shape[0]] |
|
elif destination.shape[0] < source.shape[0]: |
|
destination = torch.cat((destination, destination[-1:].repeat((source.shape[0]-destination.shape[0], 1, 1, 1))), dim=0) |
|
|
|
if not isinstance(x, list): |
|
x = [x] |
|
if not isinstance(y, list): |
|
y = [y] |
|
|
|
if len(x) < destination.shape[0]: |
|
x = x + [x[-1]] * (destination.shape[0] - len(x)) |
|
if len(y) < destination.shape[0]: |
|
y = y + [y[-1]] * (destination.shape[0] - len(y)) |
|
|
|
x = [i + offset_x for i in x] |
|
y = [i + offset_y for i in y] |
|
|
|
output = [] |
|
for i in range(destination.shape[0]): |
|
d = destination[i].clone() |
|
s = source[i] |
|
m = mask[i] |
|
|
|
if x[i]+source.shape[2] > destination.shape[2]: |
|
s = s[:, :, :destination.shape[2]-x[i], :] |
|
m = m[:, :, :destination.shape[2]-x[i], :] |
|
if y[i]+source.shape[1] > destination.shape[1]: |
|
s = s[:, :destination.shape[1]-y[i], :, :] |
|
m = m[:destination.shape[1]-y[i], :, :] |
|
|
|
|
|
d[y[i]:y[i]+s.shape[0], x[i]:x[i]+s.shape[1], :] = s * m + d[y[i]:y[i]+s.shape[0], x[i]:x[i]+s.shape[1], :] * (1 - m) |
|
output.append(d) |
|
|
|
output = torch.stack(output) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return (output,) |
|
|
|
class ImageResize: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), |
|
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }), |
|
"interpolation": (["nearest", "bilinear", "bicubic", "area", "nearest-exact", "lanczos"],), |
|
"method": (["stretch", "keep proportion", "fill / crop", "pad"],), |
|
"condition": (["always", "downscale if bigger", "upscale if smaller", "if bigger area", "if smaller area"],), |
|
"multiple_of": ("INT", { "default": 0, "min": 0, "max": 512, "step": 1, }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "INT", "INT",) |
|
RETURN_NAMES = ("IMAGE", "width", "height",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image manipulation" |
|
|
|
def execute(self, image, width, height, method="stretch", interpolation="nearest", condition="always", multiple_of=0, keep_proportion=False): |
|
_, oh, ow, _ = image.shape |
|
x = y = x2 = y2 = 0 |
|
pad_left = pad_right = pad_top = pad_bottom = 0 |
|
|
|
if keep_proportion: |
|
method = "keep proportion" |
|
|
|
if multiple_of > 1: |
|
width = width - (width % multiple_of) |
|
height = height - (height % multiple_of) |
|
|
|
if method == 'keep proportion' or method == 'pad': |
|
if width == 0 and oh < height: |
|
width = MAX_RESOLUTION |
|
elif width == 0 and oh >= height: |
|
width = ow |
|
|
|
if height == 0 and ow < width: |
|
height = MAX_RESOLUTION |
|
elif height == 0 and ow >= width: |
|
height = oh |
|
|
|
ratio = min(width / ow, height / oh) |
|
new_width = round(ow*ratio) |
|
new_height = round(oh*ratio) |
|
|
|
if method == 'pad': |
|
pad_left = (width - new_width) // 2 |
|
pad_right = width - new_width - pad_left |
|
pad_top = (height - new_height) // 2 |
|
pad_bottom = height - new_height - pad_top |
|
|
|
width = new_width |
|
height = new_height |
|
elif method.startswith('fill'): |
|
width = width if width > 0 else ow |
|
height = height if height > 0 else oh |
|
|
|
ratio = max(width / ow, height / oh) |
|
new_width = round(ow*ratio) |
|
new_height = round(oh*ratio) |
|
x = (new_width - width) // 2 |
|
y = (new_height - height) // 2 |
|
x2 = x + width |
|
y2 = y + height |
|
if x2 > new_width: |
|
x -= (x2 - new_width) |
|
if x < 0: |
|
x = 0 |
|
if y2 > new_height: |
|
y -= (y2 - new_height) |
|
if y < 0: |
|
y = 0 |
|
width = new_width |
|
height = new_height |
|
else: |
|
width = width if width > 0 else ow |
|
height = height if height > 0 else oh |
|
|
|
if "always" in condition \ |
|
or ("downscale if bigger" == condition and (oh > height or ow > width)) or ("upscale if smaller" == condition and (oh < height or ow < width)) \ |
|
or ("bigger area" in condition and (oh * ow > height * width)) or ("smaller area" in condition and (oh * ow < height * width)): |
|
|
|
outputs = image.permute(0,3,1,2) |
|
|
|
if interpolation == "lanczos": |
|
outputs = comfy.utils.lanczos(outputs, width, height) |
|
else: |
|
outputs = F.interpolate(outputs, size=(height, width), mode=interpolation) |
|
|
|
if method == 'pad': |
|
if pad_left > 0 or pad_right > 0 or pad_top > 0 or pad_bottom > 0: |
|
outputs = F.pad(outputs, (pad_left, pad_right, pad_top, pad_bottom), value=0) |
|
|
|
outputs = outputs.permute(0,2,3,1) |
|
|
|
if method.startswith('fill'): |
|
if x > 0 or y > 0 or x2 > 0 or y2 > 0: |
|
outputs = outputs[:, y:y2, x:x2, :] |
|
else: |
|
outputs = image |
|
|
|
if multiple_of > 1 and (outputs.shape[2] % multiple_of != 0 or outputs.shape[1] % multiple_of != 0): |
|
width = outputs.shape[2] |
|
height = outputs.shape[1] |
|
x = (width % multiple_of) // 2 |
|
y = (height % multiple_of) // 2 |
|
x2 = width - ((width % multiple_of) - x) |
|
y2 = height - ((height % multiple_of) - y) |
|
outputs = outputs[:, y:y2, x:x2, :] |
|
|
|
outputs = torch.clamp(outputs, 0, 1) |
|
|
|
return(outputs, outputs.shape[2], outputs.shape[1],) |
|
|
|
class ImageFlip: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"axis": (["x", "y", "xy"],), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image manipulation" |
|
|
|
def execute(self, image, axis): |
|
dim = () |
|
if "y" in axis: |
|
dim += (1,) |
|
if "x" in axis: |
|
dim += (2,) |
|
image = torch.flip(image, dim) |
|
|
|
return(image,) |
|
|
|
class ImageCrop: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"width": ("INT", { "default": 256, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), |
|
"height": ("INT", { "default": 256, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), |
|
"position": (["top-left", "top-center", "top-right", "right-center", "bottom-right", "bottom-center", "bottom-left", "left-center", "center"],), |
|
"x_offset": ("INT", { "default": 0, "min": -99999, "step": 1, }), |
|
"y_offset": ("INT", { "default": 0, "min": -99999, "step": 1, }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE","INT","INT",) |
|
RETURN_NAMES = ("IMAGE","x","y",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image manipulation" |
|
|
|
def execute(self, image, width, height, position, x_offset, y_offset): |
|
_, oh, ow, _ = image.shape |
|
|
|
width = min(ow, width) |
|
height = min(oh, height) |
|
|
|
if "center" in position: |
|
x = round((ow-width) / 2) |
|
y = round((oh-height) / 2) |
|
if "top" in position: |
|
y = 0 |
|
if "bottom" in position: |
|
y = oh-height |
|
if "left" in position: |
|
x = 0 |
|
if "right" in position: |
|
x = ow-width |
|
|
|
x += x_offset |
|
y += y_offset |
|
|
|
x2 = x+width |
|
y2 = y+height |
|
|
|
if x2 > ow: |
|
x2 = ow |
|
if x < 0: |
|
x = 0 |
|
if y2 > oh: |
|
y2 = oh |
|
if y < 0: |
|
y = 0 |
|
|
|
image = image[:, y:y2, x:x2, :] |
|
|
|
return(image, x, y, ) |
|
|
|
class ImageTile: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"rows": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }), |
|
"cols": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }), |
|
"overlap": ("FLOAT", { "default": 0, "min": 0, "max": 0.5, "step": 0.01, }), |
|
"overlap_x": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }), |
|
"overlap_y": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "INT", "INT", "INT", "INT") |
|
RETURN_NAMES = ("IMAGE", "tile_width", "tile_height", "overlap_x", "overlap_y",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image manipulation" |
|
|
|
def execute(self, image, rows, cols, overlap, overlap_x, overlap_y): |
|
h, w = image.shape[1:3] |
|
tile_h = h // rows |
|
tile_w = w // cols |
|
h = tile_h * rows |
|
w = tile_w * cols |
|
overlap_h = int(tile_h * overlap) + overlap_y |
|
overlap_w = int(tile_w * overlap) + overlap_x |
|
|
|
|
|
overlap_h = min(tile_h // 2, overlap_h) |
|
overlap_w = min(tile_w // 2, overlap_w) |
|
|
|
if rows == 1: |
|
overlap_h = 0 |
|
if cols == 1: |
|
overlap_w = 0 |
|
|
|
tiles = [] |
|
for i in range(rows): |
|
for j in range(cols): |
|
y1 = i * tile_h |
|
x1 = j * tile_w |
|
|
|
if i > 0: |
|
y1 -= overlap_h |
|
if j > 0: |
|
x1 -= overlap_w |
|
|
|
y2 = y1 + tile_h + overlap_h |
|
x2 = x1 + tile_w + overlap_w |
|
|
|
if y2 > h: |
|
y2 = h |
|
y1 = y2 - tile_h - overlap_h |
|
if x2 > w: |
|
x2 = w |
|
x1 = x2 - tile_w - overlap_w |
|
|
|
tiles.append(image[:, y1:y2, x1:x2, :]) |
|
tiles = torch.cat(tiles, dim=0) |
|
|
|
return(tiles, tile_w+overlap_w, tile_h+overlap_h, overlap_w, overlap_h,) |
|
|
|
class ImageUntile: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"tiles": ("IMAGE",), |
|
"overlap_x": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }), |
|
"overlap_y": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }), |
|
"rows": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }), |
|
"cols": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image manipulation" |
|
|
|
def execute(self, tiles, overlap_x, overlap_y, rows, cols): |
|
tile_h, tile_w = tiles.shape[1:3] |
|
tile_h -= overlap_y |
|
tile_w -= overlap_x |
|
out_w = cols * tile_w |
|
out_h = rows * tile_h |
|
|
|
out = torch.zeros((1, out_h, out_w, tiles.shape[3]), device=tiles.device, dtype=tiles.dtype) |
|
|
|
for i in range(rows): |
|
for j in range(cols): |
|
y1 = i * tile_h |
|
x1 = j * tile_w |
|
|
|
if i > 0: |
|
y1 -= overlap_y |
|
if j > 0: |
|
x1 -= overlap_x |
|
|
|
y2 = y1 + tile_h + overlap_y |
|
x2 = x1 + tile_w + overlap_x |
|
|
|
if y2 > out_h: |
|
y2 = out_h |
|
y1 = y2 - tile_h - overlap_y |
|
if x2 > out_w: |
|
x2 = out_w |
|
x1 = x2 - tile_w - overlap_x |
|
|
|
mask = torch.ones((1, tile_h+overlap_y, tile_w+overlap_x), device=tiles.device, dtype=tiles.dtype) |
|
|
|
|
|
if i > 0 and overlap_y > 0: |
|
mask[:, :overlap_y, :] *= torch.linspace(0, 1, overlap_y, device=tiles.device, dtype=tiles.dtype).unsqueeze(1) |
|
|
|
|
|
|
|
|
|
if j > 0 and overlap_x > 0: |
|
mask[:, :, :overlap_x] *= torch.linspace(0, 1, overlap_x, device=tiles.device, dtype=tiles.dtype).unsqueeze(0) |
|
|
|
|
|
|
|
|
|
mask = mask.unsqueeze(-1).repeat(1, 1, 1, tiles.shape[3]) |
|
tile = tiles[i * cols + j] * mask |
|
out[:, y1:y2, x1:x2, :] = out[:, y1:y2, x1:x2, :] * (1 - mask) + tile |
|
return(out, ) |
|
|
|
class ImageSeamCarving: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"width": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }), |
|
"height": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }), |
|
"energy": (["backward", "forward"],), |
|
"order": (["width-first", "height-first"],), |
|
}, |
|
"optional": { |
|
"keep_mask": ("MASK",), |
|
"drop_mask": ("MASK",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
CATEGORY = "essentials/image manipulation" |
|
FUNCTION = "execute" |
|
|
|
def execute(self, image, width, height, energy, order, keep_mask=None, drop_mask=None): |
|
from .carve import seam_carving |
|
|
|
img = image.permute([0, 3, 1, 2]) |
|
|
|
if keep_mask is not None: |
|
|
|
keep_mask = keep_mask.unsqueeze(1) |
|
|
|
if keep_mask.shape[2] != img.shape[2] or keep_mask.shape[3] != img.shape[3]: |
|
keep_mask = F.interpolate(keep_mask, size=(img.shape[2], img.shape[3]), mode="bilinear") |
|
if drop_mask is not None: |
|
drop_mask = drop_mask.unsqueeze(1) |
|
|
|
if drop_mask.shape[2] != img.shape[2] or drop_mask.shape[3] != img.shape[3]: |
|
drop_mask = F.interpolate(drop_mask, size=(img.shape[2], img.shape[3]), mode="bilinear") |
|
|
|
out = [] |
|
for i in range(img.shape[0]): |
|
resized = seam_carving( |
|
T.ToPILImage()(img[i]), |
|
size=(width, height), |
|
energy_mode=energy, |
|
order=order, |
|
keep_mask=T.ToPILImage()(keep_mask[i]) if keep_mask is not None else None, |
|
drop_mask=T.ToPILImage()(drop_mask[i]) if drop_mask is not None else None, |
|
) |
|
out.append(T.ToTensor()(resized)) |
|
|
|
out = torch.stack(out).permute([0, 2, 3, 1]) |
|
|
|
return(out, ) |
|
|
|
class ImageRandomTransform: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"repeat": ("INT", { "default": 1, "min": 1, "max": 256, "step": 1, }), |
|
"variation": ("FLOAT", { "default": 0.1, "min": 0.0, "max": 1.0, "step": 0.05, }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image manipulation" |
|
|
|
def execute(self, image, seed, repeat, variation): |
|
h, w = image.shape[1:3] |
|
image = image.repeat(repeat, 1, 1, 1).permute([0, 3, 1, 2]) |
|
|
|
distortion = 0.2 * variation |
|
rotation = 5 * variation |
|
brightness = 0.5 * variation |
|
contrast = 0.5 * variation |
|
saturation = 0.5 * variation |
|
hue = 0.2 * variation |
|
scale = 0.5 * variation |
|
|
|
torch.manual_seed(seed) |
|
|
|
out = [] |
|
for i in image: |
|
tramsforms = T.Compose([ |
|
T.RandomPerspective(distortion_scale=distortion, p=0.5), |
|
T.RandomRotation(degrees=rotation, interpolation=T.InterpolationMode.BILINEAR, expand=True), |
|
T.ColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=(-hue, hue)), |
|
T.RandomHorizontalFlip(p=0.5), |
|
T.RandomResizedCrop((h, w), scale=(1-scale, 1+scale), ratio=(w/h, w/h), interpolation=T.InterpolationMode.BICUBIC), |
|
]) |
|
out.append(tramsforms(i.unsqueeze(0))) |
|
|
|
out = torch.cat(out, dim=0).permute([0, 2, 3, 1]).clamp(0, 1) |
|
|
|
return (out,) |
|
|
|
class RemBGSession: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"model": (["u2net: general purpose", "u2netp: lightweight general purpose", "u2net_human_seg: human segmentation", "u2net_cloth_seg: cloths Parsing", "silueta: very small u2net", "isnet-general-use: general purpose", "isnet-anime: anime illustrations", "sam: general purpose"],), |
|
"providers": (['CPU', 'CUDA', 'ROCM', 'DirectML', 'OpenVINO', 'CoreML', 'Tensorrt', 'Azure'],), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("REMBG_SESSION",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image manipulation" |
|
|
|
def execute(self, model, providers): |
|
from rembg import new_session, remove |
|
|
|
model = model.split(":")[0] |
|
|
|
class Session: |
|
def __init__(self, model, providers): |
|
self.session = new_session(model, providers=[providers+"ExecutionProvider"]) |
|
def process(self, image): |
|
return remove(image, session=self.session) |
|
|
|
return (Session(model, providers),) |
|
|
|
class TransparentBGSession: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"mode": (["base", "fast", "base-nightly"],), |
|
"use_jit": ("BOOLEAN", { "default": True }), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("REMBG_SESSION",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image manipulation" |
|
|
|
def execute(self, mode, use_jit): |
|
from transparent_background import Remover |
|
|
|
class Session: |
|
def __init__(self, mode, use_jit): |
|
self.session = Remover(mode=mode, jit=use_jit) |
|
def process(self, image): |
|
return self.session.process(image) |
|
|
|
return (Session(mode, use_jit),) |
|
|
|
class ImageRemoveBackground: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"rembg_session": ("REMBG_SESSION",), |
|
"image": ("IMAGE",), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image manipulation" |
|
|
|
def execute(self, rembg_session, image): |
|
image = image.permute([0, 3, 1, 2]) |
|
output = [] |
|
for img in image: |
|
img = T.ToPILImage()(img) |
|
img = rembg_session.process(img) |
|
output.append(T.ToTensor()(img)) |
|
|
|
output = torch.stack(output, dim=0) |
|
output = output.permute([0, 2, 3, 1]) |
|
mask = output[:, :, :, 3] if output.shape[3] == 4 else torch.ones_like(output[:, :, :, 0]) |
|
|
|
|
|
return(output, mask,) |
|
|
|
""" |
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
Image processing |
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
""" |
|
|
|
class ImageDesaturate: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"factor": ("FLOAT", { "default": 1.00, "min": 0.00, "max": 1.00, "step": 0.05, }), |
|
"method": (["luminance (Rec.709)", "luminance (Rec.601)", "average", "lightness"],), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image processing" |
|
|
|
def execute(self, image, factor, method): |
|
if method == "luminance (Rec.709)": |
|
grayscale = 0.2126 * image[..., 0] + 0.7152 * image[..., 1] + 0.0722 * image[..., 2] |
|
elif method == "luminance (Rec.601)": |
|
grayscale = 0.299 * image[..., 0] + 0.587 * image[..., 1] + 0.114 * image[..., 2] |
|
elif method == "average": |
|
grayscale = image.mean(dim=3) |
|
elif method == "lightness": |
|
grayscale = (torch.max(image, dim=3)[0] + torch.min(image, dim=3)[0]) / 2 |
|
|
|
grayscale = (1.0 - factor) * image + factor * grayscale.unsqueeze(-1).repeat(1, 1, 1, 3) |
|
grayscale = torch.clamp(grayscale, 0, 1) |
|
|
|
return(grayscale,) |
|
|
|
class PixelOEPixelize: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"downscale_mode": (["contrast", "bicubic", "nearest", "center", "k-centroid"],), |
|
"target_size": ("INT", { "default": 128, "min": 0, "max": MAX_RESOLUTION, "step": 8 }), |
|
"patch_size": ("INT", { "default": 16, "min": 4, "max": 32, "step": 2 }), |
|
"thickness": ("INT", { "default": 2, "min": 1, "max": 16, "step": 1 }), |
|
"color_matching": ("BOOLEAN", { "default": True }), |
|
"upscale": ("BOOLEAN", { "default": True }), |
|
|
|
|
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image processing" |
|
|
|
def execute(self, image, downscale_mode, target_size, patch_size, thickness, color_matching, upscale): |
|
from pixeloe.pixelize import pixelize |
|
|
|
image = image.clone().mul(255).clamp(0, 255).byte().cpu().numpy() |
|
output = [] |
|
for img in image: |
|
img = pixelize(img, |
|
mode=downscale_mode, |
|
target_size=target_size, |
|
patch_size=patch_size, |
|
thickness=thickness, |
|
contrast=1.0, |
|
saturation=1.0, |
|
color_matching=color_matching, |
|
no_upscale=not upscale) |
|
output.append(T.ToTensor()(img)) |
|
|
|
output = torch.stack(output, dim=0).permute([0, 2, 3, 1]) |
|
|
|
return(output,) |
|
|
|
class ImagePosterize: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"threshold": ("FLOAT", { "default": 0.50, "min": 0.00, "max": 1.00, "step": 0.05, }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image processing" |
|
|
|
def execute(self, image, threshold): |
|
image = image.mean(dim=3, keepdim=True) |
|
image = (image > threshold).float() |
|
image = image.repeat(1, 1, 1, 3) |
|
|
|
return(image,) |
|
|
|
|
|
class ImageApplyLUT: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"lut_file": (folder_paths.get_filename_list("luts"),), |
|
"gamma_correction": ("BOOLEAN", { "default": True }), |
|
"clip_values": ("BOOLEAN", { "default": True }), |
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.1 }), |
|
}} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image processing" |
|
|
|
|
|
def execute(self, image, lut_file, gamma_correction, clip_values, strength): |
|
lut_file_path = folder_paths.get_full_path("luts", lut_file) |
|
if not lut_file_path or not Path(lut_file_path).exists(): |
|
print(f"Could not find LUT file: {lut_file_path}") |
|
return (image,) |
|
|
|
from colour.io.luts.iridas_cube import read_LUT_IridasCube |
|
|
|
device = image.device |
|
lut = read_LUT_IridasCube(lut_file_path) |
|
lut.name = lut_file |
|
|
|
if clip_values: |
|
if lut.domain[0].max() == lut.domain[0].min() and lut.domain[1].max() == lut.domain[1].min(): |
|
lut.table = np.clip(lut.table, lut.domain[0, 0], lut.domain[1, 0]) |
|
else: |
|
if len(lut.table.shape) == 2: |
|
for dim in range(3): |
|
lut.table[:, dim] = np.clip(lut.table[:, dim], lut.domain[0, dim], lut.domain[1, dim]) |
|
else: |
|
for dim in range(3): |
|
lut.table[:, :, :, dim] = np.clip(lut.table[:, :, :, dim], lut.domain[0, dim], lut.domain[1, dim]) |
|
|
|
out = [] |
|
for img in image: |
|
lut_img = img.cpu().numpy().copy() |
|
|
|
is_non_default_domain = not np.array_equal(lut.domain, np.array([[0., 0., 0.], [1., 1., 1.]])) |
|
dom_scale = None |
|
if is_non_default_domain: |
|
dom_scale = lut.domain[1] - lut.domain[0] |
|
lut_img = lut_img * dom_scale + lut.domain[0] |
|
if gamma_correction: |
|
lut_img = lut_img ** (1/2.2) |
|
lut_img = lut.apply(lut_img) |
|
if gamma_correction: |
|
lut_img = lut_img ** (2.2) |
|
if is_non_default_domain: |
|
lut_img = (lut_img - lut.domain[0]) / dom_scale |
|
|
|
lut_img = torch.from_numpy(lut_img).to(device) |
|
if strength < 1.0: |
|
lut_img = strength * lut_img + (1 - strength) * img |
|
out.append(lut_img) |
|
|
|
out = torch.stack(out) |
|
|
|
return (out, ) |
|
|
|
|
|
class ImageCAS: |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"amount": ("FLOAT", {"default": 0.8, "min": 0, "max": 1, "step": 0.05}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
CATEGORY = "essentials/image processing" |
|
FUNCTION = "execute" |
|
|
|
def execute(self, image, amount): |
|
epsilon = 1e-5 |
|
img = F.pad(image.permute([0,3,1,2]), pad=(1, 1, 1, 1)) |
|
|
|
a = img[..., :-2, :-2] |
|
b = img[..., :-2, 1:-1] |
|
c = img[..., :-2, 2:] |
|
d = img[..., 1:-1, :-2] |
|
e = img[..., 1:-1, 1:-1] |
|
f = img[..., 1:-1, 2:] |
|
g = img[..., 2:, :-2] |
|
h = img[..., 2:, 1:-1] |
|
i = img[..., 2:, 2:] |
|
|
|
|
|
cross = (b, d, e, f, h) |
|
mn = min_(cross) |
|
mx = max_(cross) |
|
|
|
diag = (a, c, g, i) |
|
mn2 = min_(diag) |
|
mx2 = max_(diag) |
|
mx = mx + mx2 |
|
mn = mn + mn2 |
|
|
|
|
|
inv_mx = torch.reciprocal(mx + epsilon) |
|
amp = inv_mx * torch.minimum(mn, (2 - mx)) |
|
|
|
|
|
amp = torch.sqrt(amp) |
|
w = - amp * (amount * (1/5 - 1/8) + 1/8) |
|
div = torch.reciprocal(1 + 4*w) |
|
|
|
output = ((b + d + f + h)*w + e) * div |
|
output = output.clamp(0, 1) |
|
|
|
|
|
output = output.permute([0,2,3,1]) |
|
|
|
return (output,) |
|
|
|
class ImageSmartSharpen: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"noise_radius": ("INT", { "default": 7, "min": 1, "max": 25, "step": 1, }), |
|
"preserve_edges": ("FLOAT", { "default": 0.75, "min": 0.0, "max": 1.0, "step": 0.05 }), |
|
"sharpen": ("FLOAT", { "default": 5.0, "min": 0.0, "max": 25.0, "step": 0.5 }), |
|
"ratio": ("FLOAT", { "default": 0.5, "min": 0.0, "max": 1.0, "step": 0.1 }), |
|
}} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
CATEGORY = "essentials/image processing" |
|
FUNCTION = "execute" |
|
|
|
def execute(self, image, noise_radius, preserve_edges, sharpen, ratio): |
|
import cv2 |
|
|
|
output = [] |
|
|
|
if preserve_edges > 0: |
|
preserve_edges = max(1 - preserve_edges, 0.05) |
|
|
|
for img in image: |
|
if noise_radius > 1: |
|
sigma = 0.3 * ((noise_radius - 1) * 0.5 - 1) + 0.8 |
|
|
|
blurred = cv2.bilateralFilter(img.cpu().numpy(), noise_radius, preserve_edges, sigma) |
|
blurred = torch.from_numpy(blurred) |
|
else: |
|
blurred = img |
|
|
|
if sharpen > 0: |
|
sharpened = kornia.enhance.sharpness(img.permute(2,0,1), sharpen).permute(1,2,0) |
|
else: |
|
sharpened = img |
|
|
|
img = ratio * sharpened + (1 - ratio) * blurred |
|
img = torch.clamp(img, 0, 1) |
|
output.append(img) |
|
|
|
del blurred, sharpened |
|
output = torch.stack(output) |
|
|
|
return (output,) |
|
|
|
|
|
class ExtractKeyframes: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"threshold": ("FLOAT", { "default": 0.85, "min": 0.00, "max": 1.00, "step": 0.01, }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "STRING") |
|
RETURN_NAMES = ("KEYFRAMES", "indexes") |
|
|
|
FUNCTION = "execute" |
|
CATEGORY = "essentials" |
|
|
|
def execute(self, image, threshold): |
|
window_size = 2 |
|
|
|
variations = torch.sum(torch.abs(image[1:] - image[:-1]), dim=[1, 2, 3]) |
|
|
|
threshold = torch.quantile(variations.float(), threshold).item() |
|
|
|
keyframes = [] |
|
for i in range(image.shape[0] - window_size + 1): |
|
window = image[i:i + window_size] |
|
variation = torch.sum(torch.abs(window[-1] - window[0])).item() |
|
|
|
if variation > threshold: |
|
keyframes.append(i + window_size - 1) |
|
|
|
return (image[keyframes], ','.join(map(str, keyframes)),) |
|
|
|
class ImageColorMatch: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"reference": ("IMAGE",), |
|
"color_space": (["LAB", "YCbCr", "RGB", "LUV", "YUV", "XYZ"],), |
|
"factor": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05, }), |
|
"device": (["auto", "cpu", "gpu"],), |
|
"batch_size": ("INT", { "default": 0, "min": 0, "max": 1024, "step": 1, }), |
|
}, |
|
"optional": { |
|
"reference_mask": ("MASK",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image processing" |
|
|
|
def execute(self, image, reference, color_space, factor, device, batch_size, reference_mask=None): |
|
if "gpu" == device: |
|
device = comfy.model_management.get_torch_device() |
|
elif "auto" == device: |
|
device = comfy.model_management.intermediate_device() |
|
else: |
|
device = 'cpu' |
|
|
|
image = image.permute([0, 3, 1, 2]) |
|
reference = reference.permute([0, 3, 1, 2]).to(device) |
|
|
|
|
|
if reference_mask is not None: |
|
assert reference_mask.ndim == 3, f"Expected reference_mask to have 3 dimensions, but got {reference_mask.ndim}" |
|
assert reference_mask.shape[0] == reference.shape[0], f"Frame count mismatch: reference_mask has {reference_mask.shape[0]} frames, but reference has {reference.shape[0]}" |
|
|
|
|
|
reference_mask = reference_mask.unsqueeze(1).to(device) |
|
|
|
|
|
reference_mask = (reference_mask > 0.5).float() |
|
|
|
|
|
if reference_mask.shape[2:] != reference.shape[2:]: |
|
reference_mask = comfy.utils.common_upscale( |
|
reference_mask, |
|
reference.shape[3], reference.shape[2], |
|
upscale_method='bicubic', |
|
crop='center' |
|
) |
|
|
|
if batch_size == 0 or batch_size > image.shape[0]: |
|
batch_size = image.shape[0] |
|
|
|
if "LAB" == color_space: |
|
reference = kornia.color.rgb_to_lab(reference) |
|
elif "YCbCr" == color_space: |
|
reference = kornia.color.rgb_to_ycbcr(reference) |
|
elif "LUV" == color_space: |
|
reference = kornia.color.rgb_to_luv(reference) |
|
elif "YUV" == color_space: |
|
reference = kornia.color.rgb_to_yuv(reference) |
|
elif "XYZ" == color_space: |
|
reference = kornia.color.rgb_to_xyz(reference) |
|
|
|
reference_mean, reference_std = self.compute_mean_std(reference, reference_mask) |
|
|
|
image_batch = torch.split(image, batch_size, dim=0) |
|
output = [] |
|
|
|
for image in image_batch: |
|
image = image.to(device) |
|
|
|
if color_space == "LAB": |
|
image = kornia.color.rgb_to_lab(image) |
|
elif color_space == "YCbCr": |
|
image = kornia.color.rgb_to_ycbcr(image) |
|
elif color_space == "LUV": |
|
image = kornia.color.rgb_to_luv(image) |
|
elif color_space == "YUV": |
|
image = kornia.color.rgb_to_yuv(image) |
|
elif color_space == "XYZ": |
|
image = kornia.color.rgb_to_xyz(image) |
|
|
|
image_mean, image_std = self.compute_mean_std(image) |
|
|
|
matched = torch.nan_to_num((image - image_mean) / image_std) * torch.nan_to_num(reference_std) + reference_mean |
|
matched = factor * matched + (1 - factor) * image |
|
|
|
if color_space == "LAB": |
|
matched = kornia.color.lab_to_rgb(matched) |
|
elif color_space == "YCbCr": |
|
matched = kornia.color.ycbcr_to_rgb(matched) |
|
elif color_space == "LUV": |
|
matched = kornia.color.luv_to_rgb(matched) |
|
elif color_space == "YUV": |
|
matched = kornia.color.yuv_to_rgb(matched) |
|
elif color_space == "XYZ": |
|
matched = kornia.color.xyz_to_rgb(matched) |
|
|
|
out = matched.permute([0, 2, 3, 1]).clamp(0, 1).to(comfy.model_management.intermediate_device()) |
|
output.append(out) |
|
|
|
out = None |
|
output = torch.cat(output, dim=0) |
|
return (output,) |
|
|
|
def compute_mean_std(self, tensor, mask=None): |
|
if mask is not None: |
|
|
|
masked_tensor = tensor * mask |
|
|
|
|
|
mask_sum = mask.sum(dim=[2, 3], keepdim=True) |
|
|
|
|
|
mask_sum = torch.clamp(mask_sum, min=1e-6) |
|
|
|
|
|
mean = torch.nan_to_num(masked_tensor.sum(dim=[2, 3], keepdim=True) / mask_sum) |
|
std = torch.sqrt(torch.nan_to_num(((masked_tensor - mean) ** 2 * mask).sum(dim=[2, 3], keepdim=True) / mask_sum)) |
|
else: |
|
mean = tensor.mean(dim=[2, 3], keepdim=True) |
|
std = tensor.std(dim=[2, 3], keepdim=True) |
|
return mean, std |
|
|
|
class ImageColorMatchAdobe(ImageColorMatch): |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"reference": ("IMAGE",), |
|
"color_space": (["RGB", "LAB"],), |
|
"luminance_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.05}), |
|
"color_intensity_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.05}), |
|
"fade_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05}), |
|
"neutralization_factor": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05}), |
|
"device": (["auto", "cpu", "gpu"],), |
|
}, |
|
"optional": { |
|
"reference_mask": ("MASK",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image processing" |
|
|
|
def analyze_color_statistics(self, image, mask=None): |
|
|
|
l, a, b = kornia.color.rgb_to_lab(image).chunk(3, dim=1) |
|
|
|
if mask is not None: |
|
|
|
mask = F.interpolate(mask, size=image.shape[2:], mode='nearest') |
|
mask = (mask > 0.5).float() |
|
|
|
|
|
l = l * mask |
|
a = a * mask |
|
b = b * mask |
|
|
|
|
|
num_pixels = mask.sum() |
|
mean_l = (l * mask).sum() / num_pixels |
|
mean_a = (a * mask).sum() / num_pixels |
|
mean_b = (b * mask).sum() / num_pixels |
|
std_l = torch.sqrt(((l - mean_l)**2 * mask).sum() / num_pixels) |
|
var_ab = ((a - mean_a)**2 + (b - mean_b)**2) * mask |
|
std_ab = torch.sqrt(var_ab.sum() / num_pixels) |
|
else: |
|
mean_l = l.mean() |
|
std_l = l.std() |
|
mean_a = a.mean() |
|
mean_b = b.mean() |
|
std_ab = torch.sqrt(a.var() + b.var()) |
|
|
|
return mean_l, std_l, mean_a, mean_b, std_ab |
|
|
|
def apply_color_transformation(self, image, source_stats, dest_stats, L, C, N): |
|
l, a, b = kornia.color.rgb_to_lab(image).chunk(3, dim=1) |
|
|
|
|
|
src_mean_l, src_std_l, src_mean_a, src_mean_b, src_std_ab = source_stats |
|
dest_mean_l, dest_std_l, dest_mean_a, dest_mean_b, dest_std_ab = dest_stats |
|
|
|
|
|
l_new = (l - dest_mean_l) * (src_std_l / dest_std_l) * L + src_mean_l |
|
|
|
|
|
a = a - N * dest_mean_a |
|
b = b - N * dest_mean_b |
|
|
|
|
|
a_new = a * (src_std_ab / dest_std_ab) * C |
|
b_new = b * (src_std_ab / dest_std_ab) * C |
|
|
|
|
|
lab_new = torch.cat([l_new, a_new, b_new], dim=1) |
|
|
|
|
|
rgb_new = kornia.color.lab_to_rgb(lab_new) |
|
|
|
return rgb_new |
|
|
|
def execute(self, image, reference, color_space, luminance_factor, color_intensity_factor, fade_factor, neutralization_factor, device, reference_mask=None): |
|
if "gpu" == device: |
|
device = comfy.model_management.get_torch_device() |
|
elif "auto" == device: |
|
device = comfy.model_management.intermediate_device() |
|
else: |
|
device = 'cpu' |
|
|
|
|
|
image = image.permute(0, 3, 1, 2).to(device) |
|
reference = reference.permute(0, 3, 1, 2).to(device) |
|
|
|
|
|
if reference_mask is not None: |
|
|
|
if reference_mask.ndim == 2: |
|
reference_mask = reference_mask.unsqueeze(0).unsqueeze(0) |
|
elif reference_mask.ndim == 3: |
|
reference_mask = reference_mask.unsqueeze(1) |
|
reference_mask = reference_mask.to(device) |
|
|
|
|
|
source_stats = self.analyze_color_statistics(reference, reference_mask) |
|
dest_stats = self.analyze_color_statistics(image) |
|
|
|
|
|
transformed = self.apply_color_transformation( |
|
image, source_stats, dest_stats, |
|
luminance_factor, color_intensity_factor, neutralization_factor |
|
) |
|
|
|
|
|
result = fade_factor * transformed + (1 - fade_factor) * image |
|
|
|
|
|
result = result.permute(0, 2, 3, 1).clamp(0, 1).to(comfy.model_management.intermediate_device()) |
|
|
|
return (result,) |
|
|
|
|
|
class ImageHistogramMatch: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"reference": ("IMAGE",), |
|
"method": (["pytorch", "skimage"],), |
|
"factor": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05, }), |
|
"device": (["auto", "cpu", "gpu"],), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image processing" |
|
|
|
def execute(self, image, reference, method, factor, device): |
|
if "gpu" == device: |
|
device = comfy.model_management.get_torch_device() |
|
elif "auto" == device: |
|
device = comfy.model_management.intermediate_device() |
|
else: |
|
device = 'cpu' |
|
|
|
if "pytorch" in method: |
|
from .histogram_matching import Histogram_Matching |
|
|
|
image = image.permute([0, 3, 1, 2]).to(device) |
|
reference = reference.permute([0, 3, 1, 2]).to(device)[0].unsqueeze(0) |
|
image.requires_grad = True |
|
reference.requires_grad = True |
|
|
|
out = [] |
|
|
|
for i in image: |
|
i = i.unsqueeze(0) |
|
hm = Histogram_Matching(differentiable=True) |
|
out.append(hm(i, reference)) |
|
out = torch.cat(out, dim=0) |
|
out = factor * out + (1 - factor) * image |
|
out = out.permute([0, 2, 3, 1]).clamp(0, 1) |
|
else: |
|
from skimage.exposure import match_histograms |
|
|
|
out = torch.from_numpy(match_histograms(image.cpu().numpy(), reference.cpu().numpy(), channel_axis=3)).to(device) |
|
out = factor * out + (1 - factor) * image.to(device) |
|
|
|
return (out.to(comfy.model_management.intermediate_device()),) |
|
|
|
""" |
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
Utilities |
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
""" |
|
|
|
class ImageToDevice: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"device": (["auto", "cpu", "gpu"],), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image utils" |
|
|
|
def execute(self, image, device): |
|
if "gpu" == device: |
|
device = comfy.model_management.get_torch_device() |
|
elif "auto" == device: |
|
device = comfy.model_management.intermediate_device() |
|
else: |
|
device = 'cpu' |
|
|
|
image = image.clone().to(device) |
|
torch.cuda.empty_cache() |
|
|
|
return (image,) |
|
|
|
class GetImageSize: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("INT", "INT", "INT",) |
|
RETURN_NAMES = ("width", "height", "count") |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image utils" |
|
|
|
def execute(self, image): |
|
return (image.shape[2], image.shape[1], image.shape[0]) |
|
|
|
class ImageRemoveAlpha: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image utils" |
|
|
|
def execute(self, image): |
|
if image.shape[3] == 4: |
|
image = image[..., :3] |
|
return (image,) |
|
|
|
class ImagePreviewFromLatent(SaveImage): |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_temp_directory() |
|
self.type = "temp" |
|
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) |
|
self.compress_level = 1 |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"latent": ("LATENT",), |
|
"vae": ("VAE", ), |
|
"tile_size": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}) |
|
}, "optional": { |
|
"image": (["none"], {"image_upload": False}), |
|
}, "hidden": { |
|
"prompt": "PROMPT", |
|
"extra_pnginfo": "EXTRA_PNGINFO", |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", "INT", "INT",) |
|
RETURN_NAMES = ("IMAGE", "MASK", "width", "height",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image utils" |
|
|
|
def execute(self, latent, vae, tile_size, prompt=None, extra_pnginfo=None, image=None, filename_prefix="ComfyUI"): |
|
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu") |
|
ui = None |
|
|
|
if image.startswith("clipspace"): |
|
image_path = folder_paths.get_annotated_filepath(image) |
|
if not os.path.exists(image_path): |
|
raise ValueError(f"Clipspace image does not exist anymore, select 'none' in the image field.") |
|
|
|
img = pillow(Image.open, image_path) |
|
img = pillow(ImageOps.exif_transpose, img) |
|
if img.mode == "I": |
|
img = img.point(lambda i: i * (1 / 255)) |
|
image = img.convert("RGB") |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = torch.from_numpy(image)[None,] |
|
if "A" in img.getbands(): |
|
mask = np.array(img.getchannel('A')).astype(np.float32) / 255.0 |
|
mask = 1. - torch.from_numpy(mask) |
|
ui = { |
|
"filename": os.path.basename(image_path), |
|
"subfolder": os.path.dirname(image_path), |
|
"type": "temp", |
|
} |
|
else: |
|
if tile_size > 0: |
|
tile_size = max(tile_size, 320) |
|
image = vae.decode_tiled(latent["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, ) |
|
else: |
|
image = vae.decode(latent["samples"]) |
|
ui = self.save_images(image, filename_prefix, prompt, extra_pnginfo) |
|
|
|
out = {**ui, "result": (image, mask, image.shape[2], image.shape[1],)} |
|
return out |
|
|
|
class NoiseFromImage: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"noise_strenght": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01 }), |
|
"noise_size": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01 }), |
|
"color_noise": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01 }), |
|
"mask_strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01 }), |
|
"mask_scale_diff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }), |
|
"mask_contrast": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1 }), |
|
"saturation": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step": 0.1 }), |
|
"contrast": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1 }), |
|
"blur": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.1 }), |
|
}, |
|
"optional": { |
|
"noise_mask": ("IMAGE",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/image utils" |
|
|
|
def execute(self, image, noise_size, color_noise, mask_strength, mask_scale_diff, mask_contrast, noise_strenght, saturation, contrast, blur, noise_mask=None): |
|
torch.manual_seed(0) |
|
|
|
elastic_alpha = max(image.shape[1], image.shape[2]) |
|
elastic_sigma = elastic_alpha / 400 * noise_size |
|
|
|
blur_size = int(6 * blur+1) |
|
if blur_size % 2 == 0: |
|
blur_size+= 1 |
|
|
|
if noise_mask is None: |
|
noise_mask = image |
|
|
|
|
|
if mask_contrast != 1: |
|
noise_mask = T.ColorJitter(contrast=(mask_contrast,mask_contrast))(noise_mask.permute([0, 3, 1, 2])).permute([0, 2, 3, 1]) |
|
|
|
|
|
if noise_mask.shape[1:] != image.shape[1:]: |
|
noise_mask = F.interpolate(noise_mask.permute([0, 3, 1, 2]), size=(image.shape[1], image.shape[2]), mode='bicubic', align_corners=False) |
|
noise_mask = noise_mask.permute([0, 2, 3, 1]) |
|
|
|
if noise_mask.shape[0] > image.shape[0]: |
|
noise_mask = noise_mask[:image.shape[0]] |
|
else: |
|
noise_mask = torch.cat((noise_mask, noise_mask[-1:].repeat((image.shape[0]-noise_mask.shape[0], 1, 1, 1))), dim=0) |
|
|
|
|
|
noise_mask = noise_mask.mean(dim=3).unsqueeze(-1) |
|
|
|
|
|
imgs = image.clone().permute([0, 3, 1, 2]) |
|
if color_noise > 0: |
|
color_noise = torch.normal(torch.zeros_like(imgs), std=color_noise) |
|
color_noise *= (imgs - imgs.min()) / (imgs.max() - imgs.min()) |
|
|
|
imgs = imgs + color_noise |
|
imgs = imgs.clamp(0, 1) |
|
|
|
|
|
fine_noise = [] |
|
for n in imgs: |
|
avg_color = n.mean(dim=[1,2]) |
|
|
|
tmp_noise = T.ElasticTransform(alpha=elastic_alpha, sigma=elastic_sigma, fill=avg_color.tolist())(n) |
|
if blur > 0: |
|
tmp_noise = T.GaussianBlur(blur_size, blur)(tmp_noise) |
|
tmp_noise = T.ColorJitter(contrast=(contrast,contrast), saturation=(saturation,saturation))(tmp_noise) |
|
fine_noise.append(tmp_noise) |
|
|
|
imgs = None |
|
del imgs |
|
|
|
fine_noise = torch.stack(fine_noise, dim=0) |
|
fine_noise = fine_noise.permute([0, 2, 3, 1]) |
|
|
|
|
|
mask_scale_diff = min(mask_scale_diff, 0.99) |
|
if mask_scale_diff > 0: |
|
coarse_noise = F.interpolate(fine_noise.permute([0, 3, 1, 2]), scale_factor=1-mask_scale_diff, mode='area') |
|
coarse_noise = F.interpolate(coarse_noise, size=(fine_noise.shape[1], fine_noise.shape[2]), mode='bilinear', align_corners=False) |
|
coarse_noise = coarse_noise.permute([0, 2, 3, 1]) |
|
else: |
|
coarse_noise = fine_noise |
|
|
|
output = (1 - noise_mask) * coarse_noise + noise_mask * fine_noise |
|
|
|
if mask_strength < 1: |
|
noise_mask = noise_mask.pow(mask_strength) |
|
noise_mask = torch.nan_to_num(noise_mask).clamp(0, 1) |
|
output = noise_mask * output + (1 - noise_mask) * image |
|
|
|
|
|
output = output * noise_strenght + image * (1 - noise_strenght) |
|
output = output.clamp(0, 1) |
|
|
|
return (output, ) |
|
|
|
IMAGE_CLASS_MAPPINGS = { |
|
|
|
"ImageEnhanceDifference+": ImageEnhanceDifference, |
|
|
|
|
|
"ImageBatchMultiple+": ImageBatchMultiple, |
|
"ImageExpandBatch+": ImageExpandBatch, |
|
"ImageFromBatch+": ImageFromBatch, |
|
"ImageListToBatch+": ImageListToBatch, |
|
"ImageBatchToList+": ImageBatchToList, |
|
|
|
|
|
"ImageCompositeFromMaskBatch+": ImageCompositeFromMaskBatch, |
|
"ImageComposite+": ImageComposite, |
|
"ImageCrop+": ImageCrop, |
|
"ImageFlip+": ImageFlip, |
|
"ImageRandomTransform+": ImageRandomTransform, |
|
"ImageRemoveAlpha+": ImageRemoveAlpha, |
|
"ImageRemoveBackground+": ImageRemoveBackground, |
|
"ImageResize+": ImageResize, |
|
"ImageSeamCarving+": ImageSeamCarving, |
|
"ImageTile+": ImageTile, |
|
"ImageUntile+": ImageUntile, |
|
"RemBGSession+": RemBGSession, |
|
"TransparentBGSession+": TransparentBGSession, |
|
|
|
|
|
"ImageApplyLUT+": ImageApplyLUT, |
|
"ImageCASharpening+": ImageCAS, |
|
"ImageDesaturate+": ImageDesaturate, |
|
"PixelOEPixelize+": PixelOEPixelize, |
|
"ImagePosterize+": ImagePosterize, |
|
"ImageColorMatch+": ImageColorMatch, |
|
"ImageColorMatchAdobe+": ImageColorMatchAdobe, |
|
"ImageHistogramMatch+": ImageHistogramMatch, |
|
"ImageSmartSharpen+": ImageSmartSharpen, |
|
|
|
|
|
"GetImageSize+": GetImageSize, |
|
"ImageToDevice+": ImageToDevice, |
|
"ImagePreviewFromLatent+": ImagePreviewFromLatent, |
|
"NoiseFromImage+": NoiseFromImage, |
|
|
|
} |
|
|
|
IMAGE_NAME_MAPPINGS = { |
|
|
|
"ImageEnhanceDifference+": "π§ Image Enhance Difference", |
|
|
|
|
|
"ImageBatchMultiple+": "π§ Images Batch Multiple", |
|
"ImageExpandBatch+": "π§ Image Expand Batch", |
|
"ImageFromBatch+": "π§ Image From Batch", |
|
"ImageListToBatch+": "π§ Image List To Batch", |
|
"ImageBatchToList+": "π§ Image Batch To List", |
|
|
|
|
|
"ImageCompositeFromMaskBatch+": "π§ Image Composite From Mask Batch", |
|
"ImageComposite+": "π§ Image Composite", |
|
"ImageCrop+": "π§ Image Crop", |
|
"ImageFlip+": "π§ Image Flip", |
|
"ImageRandomTransform+": "π§ Image Random Transform", |
|
"ImageRemoveAlpha+": "π§ Image Remove Alpha", |
|
"ImageRemoveBackground+": "π§ Image Remove Background", |
|
"ImageResize+": "π§ Image Resize", |
|
"ImageSeamCarving+": "π§ Image Seam Carving", |
|
"ImageTile+": "π§ Image Tile", |
|
"ImageUntile+": "π§ Image Untile", |
|
"RemBGSession+": "π§ RemBG Session", |
|
"TransparentBGSession+": "π§ InSPyReNet TransparentBG", |
|
|
|
|
|
"ImageApplyLUT+": "π§ Image Apply LUT", |
|
"ImageCASharpening+": "π§ Image Contrast Adaptive Sharpening", |
|
"ImageDesaturate+": "π§ Image Desaturate", |
|
"PixelOEPixelize+": "π§ Pixelize", |
|
"ImagePosterize+": "π§ Image Posterize", |
|
"ImageColorMatch+": "π§ Image Color Match", |
|
"ImageColorMatchAdobe+": "π§ Image Color Match Adobe", |
|
"ImageHistogramMatch+": "π§ Image Histogram Match", |
|
"ImageSmartSharpen+": "π§ Image Smart Sharpen", |
|
|
|
|
|
"GetImageSize+": "π§ Get Image Size", |
|
"ImageToDevice+": "π§ Image To Device", |
|
"ImagePreviewFromLatent+": "π§ Image Preview From Latent", |
|
"NoiseFromImage+": "π§ Noise From Image", |
|
} |
|
|