Spaces:
ginipick
/
Running on Zero

multimodalart's picture
Squashing commit
4450790 verified
raw
history blame
65.7 kB
from .utils import max_, min_
from nodes import MAX_RESOLUTION
import comfy.utils
from nodes import SaveImage
from node_helpers import pillow
from PIL import Image, ImageOps
import kornia
import torch
import torch.nn.functional as F
import torchvision.transforms.v2 as T
#import warnings
#warnings.filterwarnings('ignore', module="torchvision")
import math
import os
import numpy as np
import folder_paths
from pathlib import Path
import random
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Image analysis
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class ImageEnhanceDifference:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image1": ("IMAGE",),
"image2": ("IMAGE",),
"exponent": ("FLOAT", { "default": 0.75, "min": 0.00, "max": 1.00, "step": 0.05, }),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image analysis"
def execute(self, image1, image2, exponent):
if image1.shape[1:] != image2.shape[1:]:
image2 = comfy.utils.common_upscale(image2.permute([0,3,1,2]), image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1])
diff_image = image1 - image2
diff_image = torch.pow(diff_image, exponent)
diff_image = torch.clamp(diff_image, 0, 1)
return(diff_image,)
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Batch tools
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class ImageBatchMultiple:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image_1": ("IMAGE",),
"method": (["nearest-exact", "bilinear", "area", "bicubic", "lanczos"], { "default": "lanczos" }),
}, "optional": {
"image_2": ("IMAGE",),
"image_3": ("IMAGE",),
"image_4": ("IMAGE",),
"image_5": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image batch"
def execute(self, image_1, method, image_2=None, image_3=None, image_4=None, image_5=None):
out = image_1
if image_2 is not None:
if image_1.shape[1:] != image_2.shape[1:]:
image_2 = comfy.utils.common_upscale(image_2.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1)
out = torch.cat((image_1, image_2), dim=0)
if image_3 is not None:
if image_1.shape[1:] != image_3.shape[1:]:
image_3 = comfy.utils.common_upscale(image_3.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1)
out = torch.cat((out, image_3), dim=0)
if image_4 is not None:
if image_1.shape[1:] != image_4.shape[1:]:
image_4 = comfy.utils.common_upscale(image_4.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1)
out = torch.cat((out, image_4), dim=0)
if image_5 is not None:
if image_1.shape[1:] != image_5.shape[1:]:
image_5 = comfy.utils.common_upscale(image_5.movedim(-1,1), image_1.shape[2], image_1.shape[1], method, "center").movedim(1,-1)
out = torch.cat((out, image_5), dim=0)
return (out,)
class ImageExpandBatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"size": ("INT", { "default": 16, "min": 1, "step": 1, }),
"method": (["expand", "repeat all", "repeat first", "repeat last"],)
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image batch"
def execute(self, image, size, method):
orig_size = image.shape[0]
if orig_size == size:
return (image,)
if size <= 1:
return (image[:size],)
if 'expand' in method:
out = torch.empty([size] + list(image.shape)[1:], dtype=image.dtype, device=image.device)
if size < orig_size:
scale = (orig_size - 1) / (size - 1)
for i in range(size):
out[i] = image[min(round(i * scale), orig_size - 1)]
else:
scale = orig_size / size
for i in range(size):
out[i] = image[min(math.floor((i + 0.5) * scale), orig_size - 1)]
elif 'all' in method:
out = image.repeat([math.ceil(size / image.shape[0])] + [1] * (len(image.shape) - 1))[:size]
elif 'first' in method:
if size < image.shape[0]:
out = image[:size]
else:
out = torch.cat([image[:1].repeat(size-image.shape[0], 1, 1, 1), image], dim=0)
elif 'last' in method:
if size < image.shape[0]:
out = image[:size]
else:
out = torch.cat((image, image[-1:].repeat((size-image.shape[0], 1, 1, 1))), dim=0)
return (out,)
class ImageFromBatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE", ),
"start": ("INT", { "default": 0, "min": 0, "step": 1, }),
"length": ("INT", { "default": -1, "min": -1, "step": 1, }),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image batch"
def execute(self, image, start, length):
if length<0:
length = image.shape[0]
start = min(start, image.shape[0]-1)
length = min(image.shape[0]-start, length)
return (image[start:start + length], )
class ImageListToBatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
INPUT_IS_LIST = True
CATEGORY = "essentials/image batch"
def execute(self, image):
shape = image[0].shape[1:3]
out = []
for i in range(len(image)):
img = image[i]
if image[i].shape[1:3] != shape:
img = comfy.utils.common_upscale(img.permute([0,3,1,2]), shape[1], shape[0], upscale_method='bicubic', crop='center').permute([0,2,3,1])
out.append(img)
out = torch.cat(out, dim=0)
return (out,)
class ImageBatchToList:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE",)
OUTPUT_IS_LIST = (True,)
FUNCTION = "execute"
CATEGORY = "essentials/image batch"
def execute(self, image):
return ([image[i].unsqueeze(0) for i in range(image.shape[0])], )
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Image manipulation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class ImageCompositeFromMaskBatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image_from": ("IMAGE", ),
"image_to": ("IMAGE", ),
"mask": ("MASK", )
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, image_from, image_to, mask):
frames = mask.shape[0]
if image_from.shape[1] != image_to.shape[1] or image_from.shape[2] != image_to.shape[2]:
image_to = comfy.utils.common_upscale(image_to.permute([0,3,1,2]), image_from.shape[2], image_from.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1])
if frames < image_from.shape[0]:
image_from = image_from[:frames]
elif frames > image_from.shape[0]:
image_from = torch.cat((image_from, image_from[-1].unsqueeze(0).repeat(frames-image_from.shape[0], 1, 1, 1)), dim=0)
mask = mask.unsqueeze(3).repeat(1, 1, 1, 3)
if image_from.shape[1] != mask.shape[1] or image_from.shape[2] != mask.shape[2]:
mask = comfy.utils.common_upscale(mask.permute([0,3,1,2]), image_from.shape[2], image_from.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1])
out = mask * image_to + (1 - mask) * image_from
return (out, )
class ImageComposite:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"destination": ("IMAGE",),
"source": ("IMAGE",),
"x": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }),
"y": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }),
"offset_x": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }),
"offset_y": ("INT", { "default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1 }),
},
"optional": {
"mask": ("MASK",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, destination, source, x, y, offset_x, offset_y, mask=None):
if mask is None:
mask = torch.ones_like(source)[:,:,:,0]
mask = mask.unsqueeze(-1).repeat(1, 1, 1, 3)
if mask.shape[1:3] != source.shape[1:3]:
mask = F.interpolate(mask.permute([0, 3, 1, 2]), size=(source.shape[1], source.shape[2]), mode='bicubic')
mask = mask.permute([0, 2, 3, 1])
if mask.shape[0] > source.shape[0]:
mask = mask[:source.shape[0]]
elif mask.shape[0] < source.shape[0]:
mask = torch.cat((mask, mask[-1:].repeat((source.shape[0]-mask.shape[0], 1, 1, 1))), dim=0)
if destination.shape[0] > source.shape[0]:
destination = destination[:source.shape[0]]
elif destination.shape[0] < source.shape[0]:
destination = torch.cat((destination, destination[-1:].repeat((source.shape[0]-destination.shape[0], 1, 1, 1))), dim=0)
if not isinstance(x, list):
x = [x]
if not isinstance(y, list):
y = [y]
if len(x) < destination.shape[0]:
x = x + [x[-1]] * (destination.shape[0] - len(x))
if len(y) < destination.shape[0]:
y = y + [y[-1]] * (destination.shape[0] - len(y))
x = [i + offset_x for i in x]
y = [i + offset_y for i in y]
output = []
for i in range(destination.shape[0]):
d = destination[i].clone()
s = source[i]
m = mask[i]
if x[i]+source.shape[2] > destination.shape[2]:
s = s[:, :, :destination.shape[2]-x[i], :]
m = m[:, :, :destination.shape[2]-x[i], :]
if y[i]+source.shape[1] > destination.shape[1]:
s = s[:, :destination.shape[1]-y[i], :, :]
m = m[:destination.shape[1]-y[i], :, :]
#output.append(s * m + d[y[i]:y[i]+s.shape[0], x[i]:x[i]+s.shape[1], :] * (1 - m))
d[y[i]:y[i]+s.shape[0], x[i]:x[i]+s.shape[1], :] = s * m + d[y[i]:y[i]+s.shape[0], x[i]:x[i]+s.shape[1], :] * (1 - m)
output.append(d)
output = torch.stack(output)
# apply the source to the destination at XY position using the mask
#for i in range(destination.shape[0]):
# output[i, y[i]:y[i]+source.shape[1], x[i]:x[i]+source.shape[2], :] = source * mask + destination[i, y[i]:y[i]+source.shape[1], x[i]:x[i]+source.shape[2], :] * (1 - mask)
#for x_, y_ in zip(x, y):
# output[:, y_:y_+source.shape[1], x_:x_+source.shape[2], :] = source * mask + destination[:, y_:y_+source.shape[1], x_:x_+source.shape[2], :] * (1 - mask)
#output[:, y:y+source.shape[1], x:x+source.shape[2], :] = source * mask + destination[:, y:y+source.shape[1], x:x+source.shape[2], :] * (1 - mask)
#output = destination * (1 - mask) + source * mask
return (output,)
class ImageResize:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
"interpolation": (["nearest", "bilinear", "bicubic", "area", "nearest-exact", "lanczos"],),
"method": (["stretch", "keep proportion", "fill / crop", "pad"],),
"condition": (["always", "downscale if bigger", "upscale if smaller", "if bigger area", "if smaller area"],),
"multiple_of": ("INT", { "default": 0, "min": 0, "max": 512, "step": 1, }),
}
}
RETURN_TYPES = ("IMAGE", "INT", "INT",)
RETURN_NAMES = ("IMAGE", "width", "height",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, image, width, height, method="stretch", interpolation="nearest", condition="always", multiple_of=0, keep_proportion=False):
_, oh, ow, _ = image.shape
x = y = x2 = y2 = 0
pad_left = pad_right = pad_top = pad_bottom = 0
if keep_proportion:
method = "keep proportion"
if multiple_of > 1:
width = width - (width % multiple_of)
height = height - (height % multiple_of)
if method == 'keep proportion' or method == 'pad':
if width == 0 and oh < height:
width = MAX_RESOLUTION
elif width == 0 and oh >= height:
width = ow
if height == 0 and ow < width:
height = MAX_RESOLUTION
elif height == 0 and ow >= width:
height = oh
ratio = min(width / ow, height / oh)
new_width = round(ow*ratio)
new_height = round(oh*ratio)
if method == 'pad':
pad_left = (width - new_width) // 2
pad_right = width - new_width - pad_left
pad_top = (height - new_height) // 2
pad_bottom = height - new_height - pad_top
width = new_width
height = new_height
elif method.startswith('fill'):
width = width if width > 0 else ow
height = height if height > 0 else oh
ratio = max(width / ow, height / oh)
new_width = round(ow*ratio)
new_height = round(oh*ratio)
x = (new_width - width) // 2
y = (new_height - height) // 2
x2 = x + width
y2 = y + height
if x2 > new_width:
x -= (x2 - new_width)
if x < 0:
x = 0
if y2 > new_height:
y -= (y2 - new_height)
if y < 0:
y = 0
width = new_width
height = new_height
else:
width = width if width > 0 else ow
height = height if height > 0 else oh
if "always" in condition \
or ("downscale if bigger" == condition and (oh > height or ow > width)) or ("upscale if smaller" == condition and (oh < height or ow < width)) \
or ("bigger area" in condition and (oh * ow > height * width)) or ("smaller area" in condition and (oh * ow < height * width)):
outputs = image.permute(0,3,1,2)
if interpolation == "lanczos":
outputs = comfy.utils.lanczos(outputs, width, height)
else:
outputs = F.interpolate(outputs, size=(height, width), mode=interpolation)
if method == 'pad':
if pad_left > 0 or pad_right > 0 or pad_top > 0 or pad_bottom > 0:
outputs = F.pad(outputs, (pad_left, pad_right, pad_top, pad_bottom), value=0)
outputs = outputs.permute(0,2,3,1)
if method.startswith('fill'):
if x > 0 or y > 0 or x2 > 0 or y2 > 0:
outputs = outputs[:, y:y2, x:x2, :]
else:
outputs = image
if multiple_of > 1 and (outputs.shape[2] % multiple_of != 0 or outputs.shape[1] % multiple_of != 0):
width = outputs.shape[2]
height = outputs.shape[1]
x = (width % multiple_of) // 2
y = (height % multiple_of) // 2
x2 = width - ((width % multiple_of) - x)
y2 = height - ((height % multiple_of) - y)
outputs = outputs[:, y:y2, x:x2, :]
outputs = torch.clamp(outputs, 0, 1)
return(outputs, outputs.shape[2], outputs.shape[1],)
class ImageFlip:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"axis": (["x", "y", "xy"],),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, image, axis):
dim = ()
if "y" in axis:
dim += (1,)
if "x" in axis:
dim += (2,)
image = torch.flip(image, dim)
return(image,)
class ImageCrop:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"width": ("INT", { "default": 256, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
"height": ("INT", { "default": 256, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
"position": (["top-left", "top-center", "top-right", "right-center", "bottom-right", "bottom-center", "bottom-left", "left-center", "center"],),
"x_offset": ("INT", { "default": 0, "min": -99999, "step": 1, }),
"y_offset": ("INT", { "default": 0, "min": -99999, "step": 1, }),
}
}
RETURN_TYPES = ("IMAGE","INT","INT",)
RETURN_NAMES = ("IMAGE","x","y",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, image, width, height, position, x_offset, y_offset):
_, oh, ow, _ = image.shape
width = min(ow, width)
height = min(oh, height)
if "center" in position:
x = round((ow-width) / 2)
y = round((oh-height) / 2)
if "top" in position:
y = 0
if "bottom" in position:
y = oh-height
if "left" in position:
x = 0
if "right" in position:
x = ow-width
x += x_offset
y += y_offset
x2 = x+width
y2 = y+height
if x2 > ow:
x2 = ow
if x < 0:
x = 0
if y2 > oh:
y2 = oh
if y < 0:
y = 0
image = image[:, y:y2, x:x2, :]
return(image, x, y, )
class ImageTile:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"rows": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }),
"cols": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }),
"overlap": ("FLOAT", { "default": 0, "min": 0, "max": 0.5, "step": 0.01, }),
"overlap_x": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }),
"overlap_y": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }),
}
}
RETURN_TYPES = ("IMAGE", "INT", "INT", "INT", "INT")
RETURN_NAMES = ("IMAGE", "tile_width", "tile_height", "overlap_x", "overlap_y",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, image, rows, cols, overlap, overlap_x, overlap_y):
h, w = image.shape[1:3]
tile_h = h // rows
tile_w = w // cols
h = tile_h * rows
w = tile_w * cols
overlap_h = int(tile_h * overlap) + overlap_y
overlap_w = int(tile_w * overlap) + overlap_x
# max overlap is half of the tile size
overlap_h = min(tile_h // 2, overlap_h)
overlap_w = min(tile_w // 2, overlap_w)
if rows == 1:
overlap_h = 0
if cols == 1:
overlap_w = 0
tiles = []
for i in range(rows):
for j in range(cols):
y1 = i * tile_h
x1 = j * tile_w
if i > 0:
y1 -= overlap_h
if j > 0:
x1 -= overlap_w
y2 = y1 + tile_h + overlap_h
x2 = x1 + tile_w + overlap_w
if y2 > h:
y2 = h
y1 = y2 - tile_h - overlap_h
if x2 > w:
x2 = w
x1 = x2 - tile_w - overlap_w
tiles.append(image[:, y1:y2, x1:x2, :])
tiles = torch.cat(tiles, dim=0)
return(tiles, tile_w+overlap_w, tile_h+overlap_h, overlap_w, overlap_h,)
class ImageUntile:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"tiles": ("IMAGE",),
"overlap_x": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }),
"overlap_y": ("INT", { "default": 0, "min": 0, "max": MAX_RESOLUTION//2, "step": 1, }),
"rows": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }),
"cols": ("INT", { "default": 2, "min": 1, "max": 256, "step": 1, }),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, tiles, overlap_x, overlap_y, rows, cols):
tile_h, tile_w = tiles.shape[1:3]
tile_h -= overlap_y
tile_w -= overlap_x
out_w = cols * tile_w
out_h = rows * tile_h
out = torch.zeros((1, out_h, out_w, tiles.shape[3]), device=tiles.device, dtype=tiles.dtype)
for i in range(rows):
for j in range(cols):
y1 = i * tile_h
x1 = j * tile_w
if i > 0:
y1 -= overlap_y
if j > 0:
x1 -= overlap_x
y2 = y1 + tile_h + overlap_y
x2 = x1 + tile_w + overlap_x
if y2 > out_h:
y2 = out_h
y1 = y2 - tile_h - overlap_y
if x2 > out_w:
x2 = out_w
x1 = x2 - tile_w - overlap_x
mask = torch.ones((1, tile_h+overlap_y, tile_w+overlap_x), device=tiles.device, dtype=tiles.dtype)
# feather the overlap on top
if i > 0 and overlap_y > 0:
mask[:, :overlap_y, :] *= torch.linspace(0, 1, overlap_y, device=tiles.device, dtype=tiles.dtype).unsqueeze(1)
# feather the overlap on bottom
#if i < rows - 1:
# mask[:, -overlap_y:, :] *= torch.linspace(1, 0, overlap_y, device=tiles.device, dtype=tiles.dtype).unsqueeze(1)
# feather the overlap on left
if j > 0 and overlap_x > 0:
mask[:, :, :overlap_x] *= torch.linspace(0, 1, overlap_x, device=tiles.device, dtype=tiles.dtype).unsqueeze(0)
# feather the overlap on right
#if j < cols - 1:
# mask[:, :, -overlap_x:] *= torch.linspace(1, 0, overlap_x, device=tiles.device, dtype=tiles.dtype).unsqueeze(0)
mask = mask.unsqueeze(-1).repeat(1, 1, 1, tiles.shape[3])
tile = tiles[i * cols + j] * mask
out[:, y1:y2, x1:x2, :] = out[:, y1:y2, x1:x2, :] * (1 - mask) + tile
return(out, )
class ImageSeamCarving:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"width": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }),
"height": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }),
"energy": (["backward", "forward"],),
"order": (["width-first", "height-first"],),
},
"optional": {
"keep_mask": ("MASK",),
"drop_mask": ("MASK",),
}
}
RETURN_TYPES = ("IMAGE",)
CATEGORY = "essentials/image manipulation"
FUNCTION = "execute"
def execute(self, image, width, height, energy, order, keep_mask=None, drop_mask=None):
from .carve import seam_carving
img = image.permute([0, 3, 1, 2])
if keep_mask is not None:
#keep_mask = keep_mask.reshape((-1, 1, keep_mask.shape[-2], keep_mask.shape[-1])).movedim(1, -1)
keep_mask = keep_mask.unsqueeze(1)
if keep_mask.shape[2] != img.shape[2] or keep_mask.shape[3] != img.shape[3]:
keep_mask = F.interpolate(keep_mask, size=(img.shape[2], img.shape[3]), mode="bilinear")
if drop_mask is not None:
drop_mask = drop_mask.unsqueeze(1)
if drop_mask.shape[2] != img.shape[2] or drop_mask.shape[3] != img.shape[3]:
drop_mask = F.interpolate(drop_mask, size=(img.shape[2], img.shape[3]), mode="bilinear")
out = []
for i in range(img.shape[0]):
resized = seam_carving(
T.ToPILImage()(img[i]),
size=(width, height),
energy_mode=energy,
order=order,
keep_mask=T.ToPILImage()(keep_mask[i]) if keep_mask is not None else None,
drop_mask=T.ToPILImage()(drop_mask[i]) if drop_mask is not None else None,
)
out.append(T.ToTensor()(resized))
out = torch.stack(out).permute([0, 2, 3, 1])
return(out, )
class ImageRandomTransform:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"repeat": ("INT", { "default": 1, "min": 1, "max": 256, "step": 1, }),
"variation": ("FLOAT", { "default": 0.1, "min": 0.0, "max": 1.0, "step": 0.05, }),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, image, seed, repeat, variation):
h, w = image.shape[1:3]
image = image.repeat(repeat, 1, 1, 1).permute([0, 3, 1, 2])
distortion = 0.2 * variation
rotation = 5 * variation
brightness = 0.5 * variation
contrast = 0.5 * variation
saturation = 0.5 * variation
hue = 0.2 * variation
scale = 0.5 * variation
torch.manual_seed(seed)
out = []
for i in image:
tramsforms = T.Compose([
T.RandomPerspective(distortion_scale=distortion, p=0.5),
T.RandomRotation(degrees=rotation, interpolation=T.InterpolationMode.BILINEAR, expand=True),
T.ColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=(-hue, hue)),
T.RandomHorizontalFlip(p=0.5),
T.RandomResizedCrop((h, w), scale=(1-scale, 1+scale), ratio=(w/h, w/h), interpolation=T.InterpolationMode.BICUBIC),
])
out.append(tramsforms(i.unsqueeze(0)))
out = torch.cat(out, dim=0).permute([0, 2, 3, 1]).clamp(0, 1)
return (out,)
class RemBGSession:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": (["u2net: general purpose", "u2netp: lightweight general purpose", "u2net_human_seg: human segmentation", "u2net_cloth_seg: cloths Parsing", "silueta: very small u2net", "isnet-general-use: general purpose", "isnet-anime: anime illustrations", "sam: general purpose"],),
"providers": (['CPU', 'CUDA', 'ROCM', 'DirectML', 'OpenVINO', 'CoreML', 'Tensorrt', 'Azure'],),
},
}
RETURN_TYPES = ("REMBG_SESSION",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, model, providers):
from rembg import new_session, remove
model = model.split(":")[0]
class Session:
def __init__(self, model, providers):
self.session = new_session(model, providers=[providers+"ExecutionProvider"])
def process(self, image):
return remove(image, session=self.session)
return (Session(model, providers),)
class TransparentBGSession:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mode": (["base", "fast", "base-nightly"],),
"use_jit": ("BOOLEAN", { "default": True }),
},
}
RETURN_TYPES = ("REMBG_SESSION",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, mode, use_jit):
from transparent_background import Remover
class Session:
def __init__(self, mode, use_jit):
self.session = Remover(mode=mode, jit=use_jit)
def process(self, image):
return self.session.process(image)
return (Session(mode, use_jit),)
class ImageRemoveBackground:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"rembg_session": ("REMBG_SESSION",),
"image": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE", "MASK",)
FUNCTION = "execute"
CATEGORY = "essentials/image manipulation"
def execute(self, rembg_session, image):
image = image.permute([0, 3, 1, 2])
output = []
for img in image:
img = T.ToPILImage()(img)
img = rembg_session.process(img)
output.append(T.ToTensor()(img))
output = torch.stack(output, dim=0)
output = output.permute([0, 2, 3, 1])
mask = output[:, :, :, 3] if output.shape[3] == 4 else torch.ones_like(output[:, :, :, 0])
# output = output[:, :, :, :3]
return(output, mask,)
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Image processing
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class ImageDesaturate:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"factor": ("FLOAT", { "default": 1.00, "min": 0.00, "max": 1.00, "step": 0.05, }),
"method": (["luminance (Rec.709)", "luminance (Rec.601)", "average", "lightness"],),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image processing"
def execute(self, image, factor, method):
if method == "luminance (Rec.709)":
grayscale = 0.2126 * image[..., 0] + 0.7152 * image[..., 1] + 0.0722 * image[..., 2]
elif method == "luminance (Rec.601)":
grayscale = 0.299 * image[..., 0] + 0.587 * image[..., 1] + 0.114 * image[..., 2]
elif method == "average":
grayscale = image.mean(dim=3)
elif method == "lightness":
grayscale = (torch.max(image, dim=3)[0] + torch.min(image, dim=3)[0]) / 2
grayscale = (1.0 - factor) * image + factor * grayscale.unsqueeze(-1).repeat(1, 1, 1, 3)
grayscale = torch.clamp(grayscale, 0, 1)
return(grayscale,)
class PixelOEPixelize:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"downscale_mode": (["contrast", "bicubic", "nearest", "center", "k-centroid"],),
"target_size": ("INT", { "default": 128, "min": 0, "max": MAX_RESOLUTION, "step": 8 }),
"patch_size": ("INT", { "default": 16, "min": 4, "max": 32, "step": 2 }),
"thickness": ("INT", { "default": 2, "min": 1, "max": 16, "step": 1 }),
"color_matching": ("BOOLEAN", { "default": True }),
"upscale": ("BOOLEAN", { "default": True }),
#"contrast": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1 }),
#"saturation": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1 }),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image processing"
def execute(self, image, downscale_mode, target_size, patch_size, thickness, color_matching, upscale):
from pixeloe.pixelize import pixelize
image = image.clone().mul(255).clamp(0, 255).byte().cpu().numpy()
output = []
for img in image:
img = pixelize(img,
mode=downscale_mode,
target_size=target_size,
patch_size=patch_size,
thickness=thickness,
contrast=1.0,
saturation=1.0,
color_matching=color_matching,
no_upscale=not upscale)
output.append(T.ToTensor()(img))
output = torch.stack(output, dim=0).permute([0, 2, 3, 1])
return(output,)
class ImagePosterize:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"threshold": ("FLOAT", { "default": 0.50, "min": 0.00, "max": 1.00, "step": 0.05, }),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image processing"
def execute(self, image, threshold):
image = image.mean(dim=3, keepdim=True)
image = (image > threshold).float()
image = image.repeat(1, 1, 1, 3)
return(image,)
# From https://github.com/yoonsikp/pycubelut/blob/master/pycubelut.py (MIT license)
class ImageApplyLUT:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"lut_file": (folder_paths.get_filename_list("luts"),),
"gamma_correction": ("BOOLEAN", { "default": True }),
"clip_values": ("BOOLEAN", { "default": True }),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.1 }),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image processing"
# TODO: check if we can do without numpy
def execute(self, image, lut_file, gamma_correction, clip_values, strength):
lut_file_path = folder_paths.get_full_path("luts", lut_file)
if not lut_file_path or not Path(lut_file_path).exists():
print(f"Could not find LUT file: {lut_file_path}")
return (image,)
from colour.io.luts.iridas_cube import read_LUT_IridasCube
device = image.device
lut = read_LUT_IridasCube(lut_file_path)
lut.name = lut_file
if clip_values:
if lut.domain[0].max() == lut.domain[0].min() and lut.domain[1].max() == lut.domain[1].min():
lut.table = np.clip(lut.table, lut.domain[0, 0], lut.domain[1, 0])
else:
if len(lut.table.shape) == 2: # 3x1D
for dim in range(3):
lut.table[:, dim] = np.clip(lut.table[:, dim], lut.domain[0, dim], lut.domain[1, dim])
else: # 3D
for dim in range(3):
lut.table[:, :, :, dim] = np.clip(lut.table[:, :, :, dim], lut.domain[0, dim], lut.domain[1, dim])
out = []
for img in image: # TODO: is this more resource efficient? should we use a batch instead?
lut_img = img.cpu().numpy().copy()
is_non_default_domain = not np.array_equal(lut.domain, np.array([[0., 0., 0.], [1., 1., 1.]]))
dom_scale = None
if is_non_default_domain:
dom_scale = lut.domain[1] - lut.domain[0]
lut_img = lut_img * dom_scale + lut.domain[0]
if gamma_correction:
lut_img = lut_img ** (1/2.2)
lut_img = lut.apply(lut_img)
if gamma_correction:
lut_img = lut_img ** (2.2)
if is_non_default_domain:
lut_img = (lut_img - lut.domain[0]) / dom_scale
lut_img = torch.from_numpy(lut_img).to(device)
if strength < 1.0:
lut_img = strength * lut_img + (1 - strength) * img
out.append(lut_img)
out = torch.stack(out)
return (out, )
# From https://github.com/Jamy-L/Pytorch-Contrast-Adaptive-Sharpening/
class ImageCAS:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"amount": ("FLOAT", {"default": 0.8, "min": 0, "max": 1, "step": 0.05}),
},
}
RETURN_TYPES = ("IMAGE",)
CATEGORY = "essentials/image processing"
FUNCTION = "execute"
def execute(self, image, amount):
epsilon = 1e-5
img = F.pad(image.permute([0,3,1,2]), pad=(1, 1, 1, 1))
a = img[..., :-2, :-2]
b = img[..., :-2, 1:-1]
c = img[..., :-2, 2:]
d = img[..., 1:-1, :-2]
e = img[..., 1:-1, 1:-1]
f = img[..., 1:-1, 2:]
g = img[..., 2:, :-2]
h = img[..., 2:, 1:-1]
i = img[..., 2:, 2:]
# Computing contrast
cross = (b, d, e, f, h)
mn = min_(cross)
mx = max_(cross)
diag = (a, c, g, i)
mn2 = min_(diag)
mx2 = max_(diag)
mx = mx + mx2
mn = mn + mn2
# Computing local weight
inv_mx = torch.reciprocal(mx + epsilon)
amp = inv_mx * torch.minimum(mn, (2 - mx))
# scaling
amp = torch.sqrt(amp)
w = - amp * (amount * (1/5 - 1/8) + 1/8)
div = torch.reciprocal(1 + 4*w)
output = ((b + d + f + h)*w + e) * div
output = output.clamp(0, 1)
#output = torch.nan_to_num(output)
output = output.permute([0,2,3,1])
return (output,)
class ImageSmartSharpen:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"noise_radius": ("INT", { "default": 7, "min": 1, "max": 25, "step": 1, }),
"preserve_edges": ("FLOAT", { "default": 0.75, "min": 0.0, "max": 1.0, "step": 0.05 }),
"sharpen": ("FLOAT", { "default": 5.0, "min": 0.0, "max": 25.0, "step": 0.5 }),
"ratio": ("FLOAT", { "default": 0.5, "min": 0.0, "max": 1.0, "step": 0.1 }),
}}
RETURN_TYPES = ("IMAGE",)
CATEGORY = "essentials/image processing"
FUNCTION = "execute"
def execute(self, image, noise_radius, preserve_edges, sharpen, ratio):
import cv2
output = []
#diagonal = np.sqrt(image.shape[1]**2 + image.shape[2]**2)
if preserve_edges > 0:
preserve_edges = max(1 - preserve_edges, 0.05)
for img in image:
if noise_radius > 1:
sigma = 0.3 * ((noise_radius - 1) * 0.5 - 1) + 0.8 # this is what pytorch uses for blur
#sigma_color = preserve_edges * (diagonal / 2048)
blurred = cv2.bilateralFilter(img.cpu().numpy(), noise_radius, preserve_edges, sigma)
blurred = torch.from_numpy(blurred)
else:
blurred = img
if sharpen > 0:
sharpened = kornia.enhance.sharpness(img.permute(2,0,1), sharpen).permute(1,2,0)
else:
sharpened = img
img = ratio * sharpened + (1 - ratio) * blurred
img = torch.clamp(img, 0, 1)
output.append(img)
del blurred, sharpened
output = torch.stack(output)
return (output,)
class ExtractKeyframes:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"threshold": ("FLOAT", { "default": 0.85, "min": 0.00, "max": 1.00, "step": 0.01, }),
}
}
RETURN_TYPES = ("IMAGE", "STRING")
RETURN_NAMES = ("KEYFRAMES", "indexes")
FUNCTION = "execute"
CATEGORY = "essentials"
def execute(self, image, threshold):
window_size = 2
variations = torch.sum(torch.abs(image[1:] - image[:-1]), dim=[1, 2, 3])
#variations = torch.sum((image[1:] - image[:-1]) ** 2, dim=[1, 2, 3])
threshold = torch.quantile(variations.float(), threshold).item()
keyframes = []
for i in range(image.shape[0] - window_size + 1):
window = image[i:i + window_size]
variation = torch.sum(torch.abs(window[-1] - window[0])).item()
if variation > threshold:
keyframes.append(i + window_size - 1)
return (image[keyframes], ','.join(map(str, keyframes)),)
class ImageColorMatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"reference": ("IMAGE",),
"color_space": (["LAB", "YCbCr", "RGB", "LUV", "YUV", "XYZ"],),
"factor": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05, }),
"device": (["auto", "cpu", "gpu"],),
"batch_size": ("INT", { "default": 0, "min": 0, "max": 1024, "step": 1, }),
},
"optional": {
"reference_mask": ("MASK",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image processing"
def execute(self, image, reference, color_space, factor, device, batch_size, reference_mask=None):
if "gpu" == device:
device = comfy.model_management.get_torch_device()
elif "auto" == device:
device = comfy.model_management.intermediate_device()
else:
device = 'cpu'
image = image.permute([0, 3, 1, 2])
reference = reference.permute([0, 3, 1, 2]).to(device)
# Ensure reference_mask is in the correct format and on the right device
if reference_mask is not None:
assert reference_mask.ndim == 3, f"Expected reference_mask to have 3 dimensions, but got {reference_mask.ndim}"
assert reference_mask.shape[0] == reference.shape[0], f"Frame count mismatch: reference_mask has {reference_mask.shape[0]} frames, but reference has {reference.shape[0]}"
# Reshape mask to (batch, 1, height, width)
reference_mask = reference_mask.unsqueeze(1).to(device)
# Ensure the mask is binary (0 or 1)
reference_mask = (reference_mask > 0.5).float()
# Ensure spatial dimensions match
if reference_mask.shape[2:] != reference.shape[2:]:
reference_mask = comfy.utils.common_upscale(
reference_mask,
reference.shape[3], reference.shape[2],
upscale_method='bicubic',
crop='center'
)
if batch_size == 0 or batch_size > image.shape[0]:
batch_size = image.shape[0]
if "LAB" == color_space:
reference = kornia.color.rgb_to_lab(reference)
elif "YCbCr" == color_space:
reference = kornia.color.rgb_to_ycbcr(reference)
elif "LUV" == color_space:
reference = kornia.color.rgb_to_luv(reference)
elif "YUV" == color_space:
reference = kornia.color.rgb_to_yuv(reference)
elif "XYZ" == color_space:
reference = kornia.color.rgb_to_xyz(reference)
reference_mean, reference_std = self.compute_mean_std(reference, reference_mask)
image_batch = torch.split(image, batch_size, dim=0)
output = []
for image in image_batch:
image = image.to(device)
if color_space == "LAB":
image = kornia.color.rgb_to_lab(image)
elif color_space == "YCbCr":
image = kornia.color.rgb_to_ycbcr(image)
elif color_space == "LUV":
image = kornia.color.rgb_to_luv(image)
elif color_space == "YUV":
image = kornia.color.rgb_to_yuv(image)
elif color_space == "XYZ":
image = kornia.color.rgb_to_xyz(image)
image_mean, image_std = self.compute_mean_std(image)
matched = torch.nan_to_num((image - image_mean) / image_std) * torch.nan_to_num(reference_std) + reference_mean
matched = factor * matched + (1 - factor) * image
if color_space == "LAB":
matched = kornia.color.lab_to_rgb(matched)
elif color_space == "YCbCr":
matched = kornia.color.ycbcr_to_rgb(matched)
elif color_space == "LUV":
matched = kornia.color.luv_to_rgb(matched)
elif color_space == "YUV":
matched = kornia.color.yuv_to_rgb(matched)
elif color_space == "XYZ":
matched = kornia.color.xyz_to_rgb(matched)
out = matched.permute([0, 2, 3, 1]).clamp(0, 1).to(comfy.model_management.intermediate_device())
output.append(out)
out = None
output = torch.cat(output, dim=0)
return (output,)
def compute_mean_std(self, tensor, mask=None):
if mask is not None:
# Apply mask to the tensor
masked_tensor = tensor * mask
# Calculate the sum of the mask for each channel
mask_sum = mask.sum(dim=[2, 3], keepdim=True)
# Avoid division by zero
mask_sum = torch.clamp(mask_sum, min=1e-6)
# Calculate mean and std only for masked area
mean = torch.nan_to_num(masked_tensor.sum(dim=[2, 3], keepdim=True) / mask_sum)
std = torch.sqrt(torch.nan_to_num(((masked_tensor - mean) ** 2 * mask).sum(dim=[2, 3], keepdim=True) / mask_sum))
else:
mean = tensor.mean(dim=[2, 3], keepdim=True)
std = tensor.std(dim=[2, 3], keepdim=True)
return mean, std
class ImageColorMatchAdobe(ImageColorMatch):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"reference": ("IMAGE",),
"color_space": (["RGB", "LAB"],),
"luminance_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.05}),
"color_intensity_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 2.0, "step": 0.05}),
"fade_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05}),
"neutralization_factor": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.05}),
"device": (["auto", "cpu", "gpu"],),
},
"optional": {
"reference_mask": ("MASK",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image processing"
def analyze_color_statistics(self, image, mask=None):
# Assuming image is in RGB format
l, a, b = kornia.color.rgb_to_lab(image).chunk(3, dim=1)
if mask is not None:
# Ensure mask is binary and has the same spatial dimensions as the image
mask = F.interpolate(mask, size=image.shape[2:], mode='nearest')
mask = (mask > 0.5).float()
# Apply mask to each channel
l = l * mask
a = a * mask
b = b * mask
# Compute masked mean and std
num_pixels = mask.sum()
mean_l = (l * mask).sum() / num_pixels
mean_a = (a * mask).sum() / num_pixels
mean_b = (b * mask).sum() / num_pixels
std_l = torch.sqrt(((l - mean_l)**2 * mask).sum() / num_pixels)
var_ab = ((a - mean_a)**2 + (b - mean_b)**2) * mask
std_ab = torch.sqrt(var_ab.sum() / num_pixels)
else:
mean_l = l.mean()
std_l = l.std()
mean_a = a.mean()
mean_b = b.mean()
std_ab = torch.sqrt(a.var() + b.var())
return mean_l, std_l, mean_a, mean_b, std_ab
def apply_color_transformation(self, image, source_stats, dest_stats, L, C, N):
l, a, b = kornia.color.rgb_to_lab(image).chunk(3, dim=1)
# Unpack statistics
src_mean_l, src_std_l, src_mean_a, src_mean_b, src_std_ab = source_stats
dest_mean_l, dest_std_l, dest_mean_a, dest_mean_b, dest_std_ab = dest_stats
# Adjust luminance
l_new = (l - dest_mean_l) * (src_std_l / dest_std_l) * L + src_mean_l
# Neutralize color cast
a = a - N * dest_mean_a
b = b - N * dest_mean_b
# Adjust color intensity
a_new = a * (src_std_ab / dest_std_ab) * C
b_new = b * (src_std_ab / dest_std_ab) * C
# Combine channels
lab_new = torch.cat([l_new, a_new, b_new], dim=1)
# Convert back to RGB
rgb_new = kornia.color.lab_to_rgb(lab_new)
return rgb_new
def execute(self, image, reference, color_space, luminance_factor, color_intensity_factor, fade_factor, neutralization_factor, device, reference_mask=None):
if "gpu" == device:
device = comfy.model_management.get_torch_device()
elif "auto" == device:
device = comfy.model_management.intermediate_device()
else:
device = 'cpu'
# Ensure image and reference are in the correct shape (B, C, H, W)
image = image.permute(0, 3, 1, 2).to(device)
reference = reference.permute(0, 3, 1, 2).to(device)
# Handle reference_mask (if provided)
if reference_mask is not None:
# Ensure reference_mask is 4D (B, 1, H, W)
if reference_mask.ndim == 2:
reference_mask = reference_mask.unsqueeze(0).unsqueeze(0)
elif reference_mask.ndim == 3:
reference_mask = reference_mask.unsqueeze(1)
reference_mask = reference_mask.to(device)
# Analyze color statistics
source_stats = self.analyze_color_statistics(reference, reference_mask)
dest_stats = self.analyze_color_statistics(image)
# Apply color transformation
transformed = self.apply_color_transformation(
image, source_stats, dest_stats,
luminance_factor, color_intensity_factor, neutralization_factor
)
# Apply fade factor
result = fade_factor * transformed + (1 - fade_factor) * image
# Convert back to (B, H, W, C) format and ensure values are in [0, 1] range
result = result.permute(0, 2, 3, 1).clamp(0, 1).to(comfy.model_management.intermediate_device())
return (result,)
class ImageHistogramMatch:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"reference": ("IMAGE",),
"method": (["pytorch", "skimage"],),
"factor": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.05, }),
"device": (["auto", "cpu", "gpu"],),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image processing"
def execute(self, image, reference, method, factor, device):
if "gpu" == device:
device = comfy.model_management.get_torch_device()
elif "auto" == device:
device = comfy.model_management.intermediate_device()
else:
device = 'cpu'
if "pytorch" in method:
from .histogram_matching import Histogram_Matching
image = image.permute([0, 3, 1, 2]).to(device)
reference = reference.permute([0, 3, 1, 2]).to(device)[0].unsqueeze(0)
image.requires_grad = True
reference.requires_grad = True
out = []
for i in image:
i = i.unsqueeze(0)
hm = Histogram_Matching(differentiable=True)
out.append(hm(i, reference))
out = torch.cat(out, dim=0)
out = factor * out + (1 - factor) * image
out = out.permute([0, 2, 3, 1]).clamp(0, 1)
else:
from skimage.exposure import match_histograms
out = torch.from_numpy(match_histograms(image.cpu().numpy(), reference.cpu().numpy(), channel_axis=3)).to(device)
out = factor * out + (1 - factor) * image.to(device)
return (out.to(comfy.model_management.intermediate_device()),)
"""
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Utilities
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
class ImageToDevice:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"device": (["auto", "cpu", "gpu"],),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image utils"
def execute(self, image, device):
if "gpu" == device:
device = comfy.model_management.get_torch_device()
elif "auto" == device:
device = comfy.model_management.intermediate_device()
else:
device = 'cpu'
image = image.clone().to(device)
torch.cuda.empty_cache()
return (image,)
class GetImageSize:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
}
}
RETURN_TYPES = ("INT", "INT", "INT",)
RETURN_NAMES = ("width", "height", "count")
FUNCTION = "execute"
CATEGORY = "essentials/image utils"
def execute(self, image):
return (image.shape[2], image.shape[1], image.shape[0])
class ImageRemoveAlpha:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image utils"
def execute(self, image):
if image.shape[3] == 4:
image = image[..., :3]
return (image,)
class ImagePreviewFromLatent(SaveImage):
def __init__(self):
self.output_dir = folder_paths.get_temp_directory()
self.type = "temp"
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
self.compress_level = 1
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"latent": ("LATENT",),
"vae": ("VAE", ),
"tile_size": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64})
}, "optional": {
"image": (["none"], {"image_upload": False}),
}, "hidden": {
"prompt": "PROMPT",
"extra_pnginfo": "EXTRA_PNGINFO",
},
}
RETURN_TYPES = ("IMAGE", "MASK", "INT", "INT",)
RETURN_NAMES = ("IMAGE", "MASK", "width", "height",)
FUNCTION = "execute"
CATEGORY = "essentials/image utils"
def execute(self, latent, vae, tile_size, prompt=None, extra_pnginfo=None, image=None, filename_prefix="ComfyUI"):
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
ui = None
if image.startswith("clipspace"):
image_path = folder_paths.get_annotated_filepath(image)
if not os.path.exists(image_path):
raise ValueError(f"Clipspace image does not exist anymore, select 'none' in the image field.")
img = pillow(Image.open, image_path)
img = pillow(ImageOps.exif_transpose, img)
if img.mode == "I":
img = img.point(lambda i: i * (1 / 255))
image = img.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if "A" in img.getbands():
mask = np.array(img.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
ui = {
"filename": os.path.basename(image_path),
"subfolder": os.path.dirname(image_path),
"type": "temp",
}
else:
if tile_size > 0:
tile_size = max(tile_size, 320)
image = vae.decode_tiled(latent["samples"], tile_x=tile_size // 8, tile_y=tile_size // 8, )
else:
image = vae.decode(latent["samples"])
ui = self.save_images(image, filename_prefix, prompt, extra_pnginfo)
out = {**ui, "result": (image, mask, image.shape[2], image.shape[1],)}
return out
class NoiseFromImage:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"noise_strenght": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
"noise_size": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
"color_noise": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01 }),
"mask_strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01 }),
"mask_scale_diff": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
"mask_contrast": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1 }),
"saturation": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step": 0.1 }),
"contrast": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1 }),
"blur": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.1 }),
},
"optional": {
"noise_mask": ("IMAGE",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
CATEGORY = "essentials/image utils"
def execute(self, image, noise_size, color_noise, mask_strength, mask_scale_diff, mask_contrast, noise_strenght, saturation, contrast, blur, noise_mask=None):
torch.manual_seed(0)
elastic_alpha = max(image.shape[1], image.shape[2])# * noise_size
elastic_sigma = elastic_alpha / 400 * noise_size
blur_size = int(6 * blur+1)
if blur_size % 2 == 0:
blur_size+= 1
if noise_mask is None:
noise_mask = image
# increase contrast of the mask
if mask_contrast != 1:
noise_mask = T.ColorJitter(contrast=(mask_contrast,mask_contrast))(noise_mask.permute([0, 3, 1, 2])).permute([0, 2, 3, 1])
# Ensure noise mask is the same size as the image
if noise_mask.shape[1:] != image.shape[1:]:
noise_mask = F.interpolate(noise_mask.permute([0, 3, 1, 2]), size=(image.shape[1], image.shape[2]), mode='bicubic', align_corners=False)
noise_mask = noise_mask.permute([0, 2, 3, 1])
# Ensure we have the same number of masks and images
if noise_mask.shape[0] > image.shape[0]:
noise_mask = noise_mask[:image.shape[0]]
else:
noise_mask = torch.cat((noise_mask, noise_mask[-1:].repeat((image.shape[0]-noise_mask.shape[0], 1, 1, 1))), dim=0)
# Convert mask to grayscale mask
noise_mask = noise_mask.mean(dim=3).unsqueeze(-1)
# add color noise
imgs = image.clone().permute([0, 3, 1, 2])
if color_noise > 0:
color_noise = torch.normal(torch.zeros_like(imgs), std=color_noise)
color_noise *= (imgs - imgs.min()) / (imgs.max() - imgs.min())
imgs = imgs + color_noise
imgs = imgs.clamp(0, 1)
# create fine and coarse noise
fine_noise = []
for n in imgs:
avg_color = n.mean(dim=[1,2])
tmp_noise = T.ElasticTransform(alpha=elastic_alpha, sigma=elastic_sigma, fill=avg_color.tolist())(n)
if blur > 0:
tmp_noise = T.GaussianBlur(blur_size, blur)(tmp_noise)
tmp_noise = T.ColorJitter(contrast=(contrast,contrast), saturation=(saturation,saturation))(tmp_noise)
fine_noise.append(tmp_noise)
imgs = None
del imgs
fine_noise = torch.stack(fine_noise, dim=0)
fine_noise = fine_noise.permute([0, 2, 3, 1])
#fine_noise = torch.stack(fine_noise, dim=0)
#fine_noise = pb(fine_noise)
mask_scale_diff = min(mask_scale_diff, 0.99)
if mask_scale_diff > 0:
coarse_noise = F.interpolate(fine_noise.permute([0, 3, 1, 2]), scale_factor=1-mask_scale_diff, mode='area')
coarse_noise = F.interpolate(coarse_noise, size=(fine_noise.shape[1], fine_noise.shape[2]), mode='bilinear', align_corners=False)
coarse_noise = coarse_noise.permute([0, 2, 3, 1])
else:
coarse_noise = fine_noise
output = (1 - noise_mask) * coarse_noise + noise_mask * fine_noise
if mask_strength < 1:
noise_mask = noise_mask.pow(mask_strength)
noise_mask = torch.nan_to_num(noise_mask).clamp(0, 1)
output = noise_mask * output + (1 - noise_mask) * image
# apply noise to image
output = output * noise_strenght + image * (1 - noise_strenght)
output = output.clamp(0, 1)
return (output, )
IMAGE_CLASS_MAPPINGS = {
# Image analysis
"ImageEnhanceDifference+": ImageEnhanceDifference,
# Image batch
"ImageBatchMultiple+": ImageBatchMultiple,
"ImageExpandBatch+": ImageExpandBatch,
"ImageFromBatch+": ImageFromBatch,
"ImageListToBatch+": ImageListToBatch,
"ImageBatchToList+": ImageBatchToList,
# Image manipulation
"ImageCompositeFromMaskBatch+": ImageCompositeFromMaskBatch,
"ImageComposite+": ImageComposite,
"ImageCrop+": ImageCrop,
"ImageFlip+": ImageFlip,
"ImageRandomTransform+": ImageRandomTransform,
"ImageRemoveAlpha+": ImageRemoveAlpha,
"ImageRemoveBackground+": ImageRemoveBackground,
"ImageResize+": ImageResize,
"ImageSeamCarving+": ImageSeamCarving,
"ImageTile+": ImageTile,
"ImageUntile+": ImageUntile,
"RemBGSession+": RemBGSession,
"TransparentBGSession+": TransparentBGSession,
# Image processing
"ImageApplyLUT+": ImageApplyLUT,
"ImageCASharpening+": ImageCAS,
"ImageDesaturate+": ImageDesaturate,
"PixelOEPixelize+": PixelOEPixelize,
"ImagePosterize+": ImagePosterize,
"ImageColorMatch+": ImageColorMatch,
"ImageColorMatchAdobe+": ImageColorMatchAdobe,
"ImageHistogramMatch+": ImageHistogramMatch,
"ImageSmartSharpen+": ImageSmartSharpen,
# Utilities
"GetImageSize+": GetImageSize,
"ImageToDevice+": ImageToDevice,
"ImagePreviewFromLatent+": ImagePreviewFromLatent,
"NoiseFromImage+": NoiseFromImage,
#"ExtractKeyframes+": ExtractKeyframes,
}
IMAGE_NAME_MAPPINGS = {
# Image analysis
"ImageEnhanceDifference+": "πŸ”§ Image Enhance Difference",
# Image batch
"ImageBatchMultiple+": "πŸ”§ Images Batch Multiple",
"ImageExpandBatch+": "πŸ”§ Image Expand Batch",
"ImageFromBatch+": "πŸ”§ Image From Batch",
"ImageListToBatch+": "πŸ”§ Image List To Batch",
"ImageBatchToList+": "πŸ”§ Image Batch To List",
# Image manipulation
"ImageCompositeFromMaskBatch+": "πŸ”§ Image Composite From Mask Batch",
"ImageComposite+": "πŸ”§ Image Composite",
"ImageCrop+": "πŸ”§ Image Crop",
"ImageFlip+": "πŸ”§ Image Flip",
"ImageRandomTransform+": "πŸ”§ Image Random Transform",
"ImageRemoveAlpha+": "πŸ”§ Image Remove Alpha",
"ImageRemoveBackground+": "πŸ”§ Image Remove Background",
"ImageResize+": "πŸ”§ Image Resize",
"ImageSeamCarving+": "πŸ”§ Image Seam Carving",
"ImageTile+": "πŸ”§ Image Tile",
"ImageUntile+": "πŸ”§ Image Untile",
"RemBGSession+": "πŸ”§ RemBG Session",
"TransparentBGSession+": "πŸ”§ InSPyReNet TransparentBG",
# Image processing
"ImageApplyLUT+": "πŸ”§ Image Apply LUT",
"ImageCASharpening+": "πŸ”§ Image Contrast Adaptive Sharpening",
"ImageDesaturate+": "πŸ”§ Image Desaturate",
"PixelOEPixelize+": "πŸ”§ Pixelize",
"ImagePosterize+": "πŸ”§ Image Posterize",
"ImageColorMatch+": "πŸ”§ Image Color Match",
"ImageColorMatchAdobe+": "πŸ”§ Image Color Match Adobe",
"ImageHistogramMatch+": "πŸ”§ Image Histogram Match",
"ImageSmartSharpen+": "πŸ”§ Image Smart Sharpen",
# Utilities
"GetImageSize+": "πŸ”§ Get Image Size",
"ImageToDevice+": "πŸ”§ Image To Device",
"ImagePreviewFromLatent+": "πŸ”§ Image Preview From Latent",
"NoiseFromImage+": "πŸ”§ Noise From Image",
}