|
import math |
|
import torch |
|
from .utils import AnyType |
|
import comfy.model_management |
|
from nodes import MAX_RESOLUTION |
|
import time |
|
|
|
any = AnyType("*") |
|
|
|
class SimpleMathFloat: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"value": ("FLOAT", { "default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.05 }), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("FLOAT", ) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/utilities" |
|
|
|
def execute(self, value): |
|
return (float(value), ) |
|
|
|
class SimpleMathPercent: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"value": ("FLOAT", { "default": 0.0, "min": 0, "max": 1, "step": 0.05 }), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("FLOAT", ) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/utilities" |
|
|
|
def execute(self, value): |
|
return (float(value), ) |
|
|
|
class SimpleMathInt: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"value": ("INT", { "default": 0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 1 }), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("INT",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/utilities" |
|
|
|
def execute(self, value): |
|
return (int(value), ) |
|
|
|
class SimpleMathSlider: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"value": ("FLOAT", { "display": "slider", "default": 0.5, "min": 0.0, "max": 1.0, "step": 0.001 }), |
|
"min": ("FLOAT", { "default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.001 }), |
|
"max": ("FLOAT", { "default": 1.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.001 }), |
|
"rounding": ("INT", { "default": 0, "min": 0, "max": 10, "step": 1 }), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("FLOAT", "INT",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/utilities" |
|
|
|
def execute(self, value, min, max, rounding): |
|
value = min + value * (max - min) |
|
|
|
if rounding > 0: |
|
value = round(value, rounding) |
|
|
|
return (value, int(value), ) |
|
|
|
class SimpleMathSliderLowRes: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"value": ("INT", { "display": "slider", "default": 5, "min": 0, "max": 10, "step": 1 }), |
|
"min": ("FLOAT", { "default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.001 }), |
|
"max": ("FLOAT", { "default": 1.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.001 }), |
|
"rounding": ("INT", { "default": 0, "min": 0, "max": 10, "step": 1 }), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("FLOAT", "INT",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/utilities" |
|
|
|
def execute(self, value, min, max, rounding): |
|
value = 0.1 * value |
|
value = min + value * (max - min) |
|
if rounding > 0: |
|
value = round(value, rounding) |
|
|
|
return (value, ) |
|
|
|
class SimpleMathBoolean: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"value": ("BOOLEAN", { "default": False }), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("BOOLEAN",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/utilities" |
|
|
|
def execute(self, value): |
|
return (value, int(value), ) |
|
|
|
class SimpleMath: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"optional": { |
|
"a": (any, { "default": 0.0 }), |
|
"b": (any, { "default": 0.0 }), |
|
"c": (any, { "default": 0.0 }), |
|
}, |
|
"required": { |
|
"value": ("STRING", { "multiline": False, "default": "" }), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("INT", "FLOAT", ) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/utilities" |
|
|
|
def execute(self, value, a = 0.0, b = 0.0, c = 0.0, d = 0.0): |
|
import ast |
|
import operator as op |
|
|
|
h, w = 0.0, 0.0 |
|
if hasattr(a, 'shape'): |
|
a = list(a.shape) |
|
if hasattr(b, 'shape'): |
|
b = list(b.shape) |
|
if hasattr(c, 'shape'): |
|
c = list(c.shape) |
|
if hasattr(d, 'shape'): |
|
d = list(d.shape) |
|
|
|
if isinstance(a, str): |
|
a = float(a) |
|
if isinstance(b, str): |
|
b = float(b) |
|
if isinstance(c, str): |
|
c = float(c) |
|
if isinstance(d, str): |
|
d = float(d) |
|
|
|
operators = { |
|
ast.Add: op.add, |
|
ast.Sub: op.sub, |
|
ast.Mult: op.mul, |
|
ast.Div: op.truediv, |
|
ast.FloorDiv: op.floordiv, |
|
ast.Pow: op.pow, |
|
|
|
|
|
|
|
ast.USub: op.neg, |
|
ast.Mod: op.mod, |
|
ast.Eq: op.eq, |
|
ast.NotEq: op.ne, |
|
ast.Lt: op.lt, |
|
ast.LtE: op.le, |
|
ast.Gt: op.gt, |
|
ast.GtE: op.ge, |
|
ast.And: lambda x, y: x and y, |
|
ast.Or: lambda x, y: x or y, |
|
ast.Not: op.not_ |
|
} |
|
|
|
op_functions = { |
|
'min': min, |
|
'max': max, |
|
'round': round, |
|
'sum': sum, |
|
'len': len, |
|
} |
|
|
|
def eval_(node): |
|
if isinstance(node, ast.Num): |
|
return node.n |
|
elif isinstance(node, ast.Name): |
|
if node.id == "a": |
|
return a |
|
if node.id == "b": |
|
return b |
|
if node.id == "c": |
|
return c |
|
if node.id == "d": |
|
return d |
|
elif isinstance(node, ast.BinOp): |
|
return operators[type(node.op)](eval_(node.left), eval_(node.right)) |
|
elif isinstance(node, ast.UnaryOp): |
|
return operators[type(node.op)](eval_(node.operand)) |
|
elif isinstance(node, ast.Compare): |
|
left = eval_(node.left) |
|
for op, comparator in zip(node.ops, node.comparators): |
|
if not operators[type(op)](left, eval_(comparator)): |
|
return 0 |
|
return 1 |
|
elif isinstance(node, ast.BoolOp): |
|
values = [eval_(value) for value in node.values] |
|
return operators[type(node.op)](*values) |
|
elif isinstance(node, ast.Call): |
|
if node.func.id in op_functions: |
|
args =[eval_(arg) for arg in node.args] |
|
return op_functions[node.func.id](*args) |
|
elif isinstance(node, ast.Subscript): |
|
value = eval_(node.value) |
|
if isinstance(node.slice, ast.Constant): |
|
return value[node.slice.value] |
|
else: |
|
return 0 |
|
else: |
|
return 0 |
|
|
|
result = eval_(ast.parse(value, mode='eval').body) |
|
|
|
if math.isnan(result): |
|
result = 0.0 |
|
|
|
return (round(result), result, ) |
|
|
|
class SimpleMathDual: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"optional": { |
|
"a": (any, { "default": 0.0 }), |
|
"b": (any, { "default": 0.0 }), |
|
"c": (any, { "default": 0.0 }), |
|
"d": (any, { "default": 0.0 }), |
|
}, |
|
"required": { |
|
"value_1": ("STRING", { "multiline": False, "default": "" }), |
|
"value_2": ("STRING", { "multiline": False, "default": "" }), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("INT", "FLOAT", "INT", "FLOAT", ) |
|
RETURN_NAMES = ("int_1", "float_1", "int_2", "float_2" ) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/utilities" |
|
|
|
def execute(self, value_1, value_2, a = 0.0, b = 0.0, c = 0.0, d = 0.0): |
|
return SimpleMath().execute(value_1, a, b, c, d) + SimpleMath().execute(value_2, a, b, c, d) |
|
|
|
class SimpleMathCondition: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"optional": { |
|
"a": (any, { "default": 0.0 }), |
|
"b": (any, { "default": 0.0 }), |
|
"c": (any, { "default": 0.0 }), |
|
}, |
|
"required": { |
|
"evaluate": (any, {"default": 0}), |
|
"on_true": ("STRING", { "multiline": False, "default": "" }), |
|
"on_false": ("STRING", { "multiline": False, "default": "" }), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("INT", "FLOAT", ) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/utilities" |
|
|
|
def execute(self, evaluate, on_true, on_false, a = 0.0, b = 0.0, c = 0.0): |
|
return SimpleMath().execute(on_true if evaluate else on_false, a, b, c) |
|
|
|
class SimpleCondition: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"evaluate": (any, {"default": 0}), |
|
"on_true": (any, {"default": 0}), |
|
}, |
|
"optional": { |
|
"on_false": (any, {"default": None}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = (any,) |
|
RETURN_NAMES = ("result",) |
|
FUNCTION = "execute" |
|
|
|
CATEGORY = "essentials/utilities" |
|
|
|
def execute(self, evaluate, on_true, on_false=None): |
|
from comfy_execution.graph import ExecutionBlocker |
|
if not evaluate: |
|
return (on_false if on_false is not None else ExecutionBlocker(None),) |
|
|
|
return (on_true,) |
|
|
|
class SimpleComparison: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"a": (any, {"default": 0}), |
|
"b": (any, {"default": 0}), |
|
"comparison": (["==", "!=", "<", "<=", ">", ">="],), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("BOOLEAN",) |
|
FUNCTION = "execute" |
|
|
|
CATEGORY = "essentials/utilities" |
|
|
|
def execute(self, a, b, comparison): |
|
if comparison == "==": |
|
return (a == b,) |
|
elif comparison == "!=": |
|
return (a != b,) |
|
elif comparison == "<": |
|
return (a < b,) |
|
elif comparison == "<=": |
|
return (a <= b,) |
|
elif comparison == ">": |
|
return (a > b,) |
|
elif comparison == ">=": |
|
return (a >= b,) |
|
|
|
class ConsoleDebug: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"value": (any, {}), |
|
}, |
|
"optional": { |
|
"prefix": ("STRING", { "multiline": False, "default": "Value:" }) |
|
} |
|
} |
|
|
|
RETURN_TYPES = () |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/utilities" |
|
OUTPUT_NODE = True |
|
|
|
def execute(self, value, prefix): |
|
print(f"\033[96m{prefix} {value}\033[0m") |
|
|
|
return (None,) |
|
|
|
class DebugTensorShape: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"tensor": (any, {}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = () |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/utilities" |
|
OUTPUT_NODE = True |
|
|
|
def execute(self, tensor): |
|
shapes = [] |
|
def tensorShape(tensor): |
|
if isinstance(tensor, dict): |
|
for k in tensor: |
|
tensorShape(tensor[k]) |
|
elif isinstance(tensor, list): |
|
for i in range(len(tensor)): |
|
tensorShape(tensor[i]) |
|
elif hasattr(tensor, 'shape'): |
|
shapes.append(list(tensor.shape)) |
|
|
|
tensorShape(tensor) |
|
|
|
print(f"\033[96mShapes found: {shapes}\033[0m") |
|
|
|
return (None,) |
|
|
|
class BatchCount: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"batch": (any, {}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("INT",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/utilities" |
|
|
|
def execute(self, batch): |
|
count = 0 |
|
if hasattr(batch, 'shape'): |
|
count = batch.shape[0] |
|
elif isinstance(batch, dict) and 'samples' in batch: |
|
count = batch['samples'].shape[0] |
|
elif isinstance(batch, list) or isinstance(batch, dict): |
|
count = len(batch) |
|
|
|
return (count, ) |
|
|
|
class ModelCompile(): |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"model": ("MODEL",), |
|
"fullgraph": ("BOOLEAN", { "default": False }), |
|
"dynamic": ("BOOLEAN", { "default": False }), |
|
"mode": (["default", "reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs"],), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("MODEL", ) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/utilities" |
|
|
|
def execute(self, model, fullgraph, dynamic, mode): |
|
work_model = model.clone() |
|
torch._dynamo.config.suppress_errors = True |
|
work_model.add_object_patch("diffusion_model", torch.compile(model=work_model.get_model_object("diffusion_model"), dynamic=dynamic, fullgraph=fullgraph, mode=mode)) |
|
return (work_model, ) |
|
|
|
class RemoveLatentMask: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "samples": ("LATENT",),}} |
|
RETURN_TYPES = ("LATENT",) |
|
FUNCTION = "execute" |
|
|
|
CATEGORY = "essentials/utilities" |
|
|
|
def execute(self, samples): |
|
s = samples.copy() |
|
if "noise_mask" in s: |
|
del s["noise_mask"] |
|
|
|
return (s,) |
|
|
|
class SDXLEmptyLatentSizePicker: |
|
def __init__(self): |
|
self.device = comfy.model_management.intermediate_device() |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"resolution": (["704x1408 (0.5)","704x1344 (0.52)","768x1344 (0.57)","768x1280 (0.6)","832x1216 (0.68)","832x1152 (0.72)","896x1152 (0.78)","896x1088 (0.82)","960x1088 (0.88)","960x1024 (0.94)","1024x1024 (1.0)","1024x960 (1.07)","1088x960 (1.13)","1088x896 (1.21)","1152x896 (1.29)","1152x832 (1.38)","1216x832 (1.46)","1280x768 (1.67)","1344x768 (1.75)","1344x704 (1.91)","1408x704 (2.0)","1472x704 (2.09)","1536x640 (2.4)","1600x640 (2.5)","1664x576 (2.89)","1728x576 (3.0)",], {"default": "1024x1024 (1.0)"}), |
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), |
|
"width_override": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), |
|
"height_override": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), |
|
}} |
|
|
|
RETURN_TYPES = ("LATENT","INT","INT",) |
|
RETURN_NAMES = ("LATENT","width","height",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/utilities" |
|
|
|
def execute(self, resolution, batch_size, width_override=0, height_override=0): |
|
width, height = resolution.split(" ")[0].split("x") |
|
width = width_override if width_override > 0 else int(width) |
|
height = height_override if height_override > 0 else int(height) |
|
|
|
latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device) |
|
|
|
return ({"samples":latent}, width, height,) |
|
|
|
class DisplayAny: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"input": (("*",{})), |
|
"mode": (["raw value", "tensor shape"],), |
|
}, |
|
} |
|
|
|
@classmethod |
|
def VALIDATE_INPUTS(s, input_types): |
|
return True |
|
|
|
RETURN_TYPES = ("STRING",) |
|
FUNCTION = "execute" |
|
OUTPUT_NODE = True |
|
|
|
CATEGORY = "essentials/utilities" |
|
|
|
def execute(self, input, mode): |
|
if mode == "tensor shape": |
|
text = [] |
|
def tensorShape(tensor): |
|
if isinstance(tensor, dict): |
|
for k in tensor: |
|
tensorShape(tensor[k]) |
|
elif isinstance(tensor, list): |
|
for i in range(len(tensor)): |
|
tensorShape(tensor[i]) |
|
elif hasattr(tensor, 'shape'): |
|
text.append(list(tensor.shape)) |
|
|
|
tensorShape(input) |
|
input = text |
|
|
|
text = str(input) |
|
|
|
return {"ui": {"text": text}, "result": (text,)} |
|
|
|
MISC_CLASS_MAPPINGS = { |
|
"BatchCount+": BatchCount, |
|
"ConsoleDebug+": ConsoleDebug, |
|
"DebugTensorShape+": DebugTensorShape, |
|
"DisplayAny": DisplayAny, |
|
"ModelCompile+": ModelCompile, |
|
"RemoveLatentMask+": RemoveLatentMask, |
|
"SDXLEmptyLatentSizePicker+": SDXLEmptyLatentSizePicker, |
|
"SimpleComparison+": SimpleComparison, |
|
"SimpleCondition+": SimpleCondition, |
|
"SimpleMath+": SimpleMath, |
|
"SimpleMathDual+": SimpleMathDual, |
|
"SimpleMathCondition+": SimpleMathCondition, |
|
"SimpleMathBoolean+": SimpleMathBoolean, |
|
"SimpleMathFloat+": SimpleMathFloat, |
|
"SimpleMathInt+": SimpleMathInt, |
|
"SimpleMathPercent+": SimpleMathPercent, |
|
"SimpleMathSlider+": SimpleMathSlider, |
|
"SimpleMathSliderLowRes+": SimpleMathSliderLowRes, |
|
} |
|
|
|
MISC_NAME_MAPPINGS = { |
|
"BatchCount+": "π§ Batch Count", |
|
"ConsoleDebug+": "π§ Console Debug", |
|
"DebugTensorShape+": "π§ Debug Tensor Shape", |
|
"DisplayAny": "π§ Display Any", |
|
"ModelCompile+": "π§ Model Compile", |
|
"RemoveLatentMask+": "π§ Remove Latent Mask", |
|
"SDXLEmptyLatentSizePicker+": "π§ Empty Latent Size Picker", |
|
"SimpleComparison+": "π§ Simple Comparison", |
|
"SimpleCondition+": "π§ Simple Condition", |
|
"SimpleMath+": "π§ Simple Math", |
|
"SimpleMathDual+": "π§ Simple Math Dual", |
|
"SimpleMathCondition+": "π§ Simple Math Condition", |
|
"SimpleMathBoolean+": "π§ Simple Math Boolean", |
|
"SimpleMathFloat+": "π§ Simple Math Float", |
|
"SimpleMathInt+": "π§ Simple Math Int", |
|
"SimpleMathPercent+": "π§ Simple Math Percent", |
|
"SimpleMathSlider+": "π§ Simple Math Slider", |
|
"SimpleMathSliderLowRes+": "π§ Simple Math Slider low-res", |
|
} |