Spaces:
ginipick
/
Running on Zero

multimodalart's picture
Squashing commit
4450790 verified
raw
history blame
36.5 kB
import os
import comfy.samplers
import comfy.sample
import torch
from nodes import common_ksampler, CLIPTextEncode
from comfy.utils import ProgressBar
from .utils import expand_mask, FONTS_DIR, parse_string_to_list
import torchvision.transforms.v2 as T
import torch.nn.functional as F
import logging
import folder_paths
# From https://github.com/BlenderNeko/ComfyUI_Noise/
def slerp(val, low, high):
dims = low.shape
low = low.reshape(dims[0], -1)
high = high.reshape(dims[0], -1)
low_norm = low/torch.norm(low, dim=1, keepdim=True)
high_norm = high/torch.norm(high, dim=1, keepdim=True)
low_norm[low_norm != low_norm] = 0.0
high_norm[high_norm != high_norm] = 0.0
omega = torch.acos((low_norm*high_norm).sum(1))
so = torch.sin(omega)
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
return res.reshape(dims)
class KSamplerVariationsWithNoise:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL", ),
"latent_image": ("LATENT", ),
"main_seed": ("INT:seed", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"variation_strength": ("FLOAT", {"default": 0.17, "min": 0.0, "max": 1.0, "step":0.01, "round": 0.01}),
#"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
#"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
#"return_with_leftover_noise": (["disable", "enable"], ),
"variation_seed": ("INT:seed", {"default": 12345, "min": 0, "max": 0xffffffffffffffff}),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step":0.01, "round": 0.01}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "execute"
CATEGORY = "essentials/sampling"
def prepare_mask(self, mask, shape):
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear")
mask = mask.expand((-1,shape[1],-1,-1))
if mask.shape[0] < shape[0]:
mask = mask.repeat((shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]]
return mask
def execute(self, model, latent_image, main_seed, steps, cfg, sampler_name, scheduler, positive, negative, variation_strength, variation_seed, denoise):
if main_seed == variation_seed:
variation_seed += 1
end_at_step = steps #min(steps, end_at_step)
start_at_step = round(end_at_step - end_at_step * denoise)
force_full_denoise = True
disable_noise = True
device = comfy.model_management.get_torch_device()
# Generate base noise
batch_size, _, height, width = latent_image["samples"].shape
generator = torch.manual_seed(main_seed)
base_noise = torch.randn((1, 4, height, width), dtype=torch.float32, device="cpu", generator=generator).repeat(batch_size, 1, 1, 1).cpu()
# Generate variation noise
generator = torch.manual_seed(variation_seed)
variation_noise = torch.randn((batch_size, 4, height, width), dtype=torch.float32, device="cpu", generator=generator).cpu()
slerp_noise = slerp(variation_strength, base_noise, variation_noise)
# Calculate sigma
comfy.model_management.load_model_gpu(model)
sampler = comfy.samplers.KSampler(model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=1.0, model_options=model.model_options)
sigmas = sampler.sigmas
sigma = sigmas[start_at_step] - sigmas[end_at_step]
sigma /= model.model.latent_format.scale_factor
sigma = sigma.detach().cpu().item()
work_latent = latent_image.copy()
work_latent["samples"] = latent_image["samples"].clone() + slerp_noise * sigma
# if there's a mask we need to expand it to avoid artifacts, 5 pixels should be enough
if "noise_mask" in latent_image:
noise_mask = self.prepare_mask(latent_image["noise_mask"], latent_image['samples'].shape)
work_latent["samples"] = noise_mask * work_latent["samples"] + (1-noise_mask) * latent_image["samples"]
work_latent['noise_mask'] = expand_mask(latent_image["noise_mask"].clone(), 5, True)
return common_ksampler(model, main_seed, steps, cfg, sampler_name, scheduler, positive, negative, work_latent, denoise=1.0, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
class KSamplerVariationsStochastic:
@classmethod
def INPUT_TYPES(s):
return {"required":{
"model": ("MODEL",),
"latent_image": ("LATENT", ),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 25, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
"sampler": (comfy.samplers.KSampler.SAMPLERS, ),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"variation_seed": ("INT:seed", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"variation_strength": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step":0.05, "round": 0.01}),
#"variation_sampler": (comfy.samplers.KSampler.SAMPLERS, ),
"cfg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step":0.05, "round": 0.01}),
}}
RETURN_TYPES = ("LATENT", )
FUNCTION = "execute"
CATEGORY = "essentials/sampling"
def execute(self, model, latent_image, noise_seed, steps, cfg, sampler, scheduler, positive, negative, variation_seed, variation_strength, cfg_scale, variation_sampler="dpmpp_2m_sde"):
# Stage 1: composition sampler
force_full_denoise = False # return with leftover noise = "enable"
disable_noise = False # add noise = "enable"
end_at_step = max(int(steps * (1-variation_strength)), 1)
start_at_step = 0
work_latent = latent_image.copy()
batch_size = work_latent["samples"].shape[0]
work_latent["samples"] = work_latent["samples"][0].unsqueeze(0)
stage1 = common_ksampler(model, noise_seed, steps, cfg, sampler, scheduler, positive, negative, work_latent, denoise=1.0, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)[0]
if batch_size > 1:
stage1["samples"] = stage1["samples"].clone().repeat(batch_size, 1, 1, 1)
# Stage 2: variation sampler
force_full_denoise = True
disable_noise = True
cfg = max(cfg * cfg_scale, 1.0)
start_at_step = end_at_step
end_at_step = steps
return common_ksampler(model, variation_seed, steps, cfg, variation_sampler, scheduler, positive, negative, stage1, denoise=1.0, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
class InjectLatentNoise:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"latent": ("LATENT", ),
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"noise_strength": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step":0.01, "round": 0.01}),
"normalize": (["false", "true"], {"default": "false"}),
},
"optional": {
"mask": ("MASK", ),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "execute"
CATEGORY = "essentials/sampling"
def execute(self, latent, noise_seed, noise_strength, normalize="false", mask=None):
torch.manual_seed(noise_seed)
noise_latent = latent.copy()
original_samples = noise_latent["samples"].clone()
random_noise = torch.randn_like(original_samples)
if normalize == "true":
mean = original_samples.mean()
std = original_samples.std()
random_noise = random_noise * std + mean
random_noise = original_samples + random_noise * noise_strength
if mask is not None:
mask = F.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(random_noise.shape[2], random_noise.shape[3]), mode="bilinear")
mask = mask.expand((-1,random_noise.shape[1],-1,-1)).clamp(0.0, 1.0)
if mask.shape[0] < random_noise.shape[0]:
mask = mask.repeat((random_noise.shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:random_noise.shape[0]]
elif mask.shape[0] > random_noise.shape[0]:
mask = mask[:random_noise.shape[0]]
random_noise = mask * random_noise + (1-mask) * original_samples
noise_latent["samples"] = random_noise
return (noise_latent, )
class TextEncodeForSamplerParams:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"text": ("STRING", {"multiline": True, "dynamicPrompts": True, "default": "Separate prompts with at least three dashes\n---\nLike so"}),
"clip": ("CLIP", )
}}
RETURN_TYPES = ("CONDITIONING", )
FUNCTION = "execute"
CATEGORY = "essentials/sampling"
def execute(self, text, clip):
import re
output_text = []
output_encoded = []
text = re.sub(r'[-*=~]{4,}\n', '---\n', text)
text = text.split("---\n")
for t in text:
t = t.strip()
if t:
output_text.append(t)
output_encoded.append(CLIPTextEncode().encode(clip, t)[0])
#if len(output_encoded) == 1:
# output = output_encoded[0]
#else:
output = {"text": output_text, "encoded": output_encoded}
return (output, )
class SamplerSelectHelper:
@classmethod
def INPUT_TYPES(s):
return {"required": {
**{s: ("BOOLEAN", { "default": False }) for s in comfy.samplers.KSampler.SAMPLERS},
}}
RETURN_TYPES = ("STRING", )
FUNCTION = "execute"
CATEGORY = "essentials/sampling"
def execute(self, **values):
values = [v for v in values if values[v]]
values = ", ".join(values)
return (values, )
class SchedulerSelectHelper:
@classmethod
def INPUT_TYPES(s):
return {"required": {
**{s: ("BOOLEAN", { "default": False }) for s in comfy.samplers.KSampler.SCHEDULERS},
}}
RETURN_TYPES = ("STRING", )
FUNCTION = "execute"
CATEGORY = "essentials/sampling"
def execute(self, **values):
values = [v for v in values if values[v]]
values = ", ".join(values)
return (values, )
class LorasForFluxParams:
@classmethod
def INPUT_TYPES(s):
optional_loras = ['none'] + folder_paths.get_filename_list("loras")
return {
"required": {
"lora_1": (folder_paths.get_filename_list("loras"), {"tooltip": "The name of the LoRA."}),
"strength_model_1": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "1.0" }),
},
#"optional": {
# "lora_2": (optional_loras, ),
# "strength_lora_2": ("STRING", { "multiline": False, "dynamicPrompts": False }),
# "lora_3": (optional_loras, ),
# "strength_lora_3": ("STRING", { "multiline": False, "dynamicPrompts": False }),
# "lora_4": (optional_loras, ),
# "strength_lora_4": ("STRING", { "multiline": False, "dynamicPrompts": False }),
#}
}
RETURN_TYPES = ("LORA_PARAMS", )
FUNCTION = "execute"
CATEGORY = "essentials/sampling"
def execute(self, lora_1, strength_model_1, lora_2="none", strength_lora_2="", lora_3="none", strength_lora_3="", lora_4="none", strength_lora_4=""):
output = { "loras": [], "strengths": [] }
output["loras"].append(lora_1)
output["strengths"].append(parse_string_to_list(strength_model_1))
if lora_2 != "none":
output["loras"].append(lora_2)
if strength_lora_2 == "":
strength_lora_2 = "1.0"
output["strengths"].append(parse_string_to_list(strength_lora_2))
if lora_3 != "none":
output["loras"].append(lora_3)
if strength_lora_3 == "":
strength_lora_3 = "1.0"
output["strengths"].append(parse_string_to_list(strength_lora_3))
if lora_4 != "none":
output["loras"].append(lora_4)
if strength_lora_4 == "":
strength_lora_4 = "1.0"
output["strengths"].append(parse_string_to_list(strength_lora_4))
return (output,)
class FluxSamplerParams:
def __init__(self):
self.loraloader = None
self.lora = (None, None)
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL", ),
"conditioning": ("CONDITIONING", ),
"latent_image": ("LATENT", ),
"seed": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "?" }),
"sampler": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "euler" }),
"scheduler": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "simple" }),
"steps": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "20" }),
"guidance": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "3.5" }),
"max_shift": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "" }),
"base_shift": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "" }),
"denoise": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "1.0" }),
},
"optional": {
"loras": ("LORA_PARAMS",),
}}
RETURN_TYPES = ("LATENT","SAMPLER_PARAMS")
RETURN_NAMES = ("latent", "params")
FUNCTION = "execute"
CATEGORY = "essentials/sampling"
def execute(self, model, conditioning, latent_image, seed, sampler, scheduler, steps, guidance, max_shift, base_shift, denoise, loras=None):
import random
import time
from comfy_extras.nodes_custom_sampler import Noise_RandomNoise, BasicScheduler, BasicGuider, SamplerCustomAdvanced
from comfy_extras.nodes_latent import LatentBatch
from comfy_extras.nodes_model_advanced import ModelSamplingFlux, ModelSamplingAuraFlow
from node_helpers import conditioning_set_values
from nodes import LoraLoader
is_schnell = model.model.model_type == comfy.model_base.ModelType.FLOW
noise = seed.replace("\n", ",").split(",")
noise = [random.randint(0, 999999) if "?" in n else int(n) for n in noise]
if not noise:
noise = [random.randint(0, 999999)]
if sampler == '*':
sampler = comfy.samplers.KSampler.SAMPLERS
elif sampler.startswith("!"):
sampler = sampler.replace("\n", ",").split(",")
sampler = [s.strip("! ") for s in sampler]
sampler = [s for s in comfy.samplers.KSampler.SAMPLERS if s not in sampler]
else:
sampler = sampler.replace("\n", ",").split(",")
sampler = [s.strip() for s in sampler if s.strip() in comfy.samplers.KSampler.SAMPLERS]
if not sampler:
sampler = ['ipndm']
if scheduler == '*':
scheduler = comfy.samplers.KSampler.SCHEDULERS
elif scheduler.startswith("!"):
scheduler = scheduler.replace("\n", ",").split(",")
scheduler = [s.strip("! ") for s in scheduler]
scheduler = [s for s in comfy.samplers.KSampler.SCHEDULERS if s not in scheduler]
else:
scheduler = scheduler.replace("\n", ",").split(",")
scheduler = [s.strip() for s in scheduler]
scheduler = [s for s in scheduler if s in comfy.samplers.KSampler.SCHEDULERS]
if not scheduler:
scheduler = ['simple']
if steps == "":
if is_schnell:
steps = "4"
else:
steps = "20"
steps = parse_string_to_list(steps)
denoise = "1.0" if denoise == "" else denoise
denoise = parse_string_to_list(denoise)
guidance = "3.5" if guidance == "" else guidance
guidance = parse_string_to_list(guidance)
if not is_schnell:
max_shift = "1.15" if max_shift == "" else max_shift
base_shift = "0.5" if base_shift == "" else base_shift
else:
max_shift = "0"
base_shift = "1.0" if base_shift == "" else base_shift
max_shift = parse_string_to_list(max_shift)
base_shift = parse_string_to_list(base_shift)
cond_text = None
if isinstance(conditioning, dict) and "encoded" in conditioning:
cond_text = conditioning["text"]
cond_encoded = conditioning["encoded"]
else:
cond_encoded = [conditioning]
out_latent = None
out_params = []
basicschedueler = BasicScheduler()
basicguider = BasicGuider()
samplercustomadvanced = SamplerCustomAdvanced()
latentbatch = LatentBatch()
modelsamplingflux = ModelSamplingFlux() if not is_schnell else ModelSamplingAuraFlow()
width = latent_image["samples"].shape[3]*8
height = latent_image["samples"].shape[2]*8
lora_strength_len = 1
if loras:
lora_model = loras["loras"]
lora_strength = loras["strengths"]
lora_strength_len = sum(len(i) for i in lora_strength)
if self.loraloader is None:
self.loraloader = LoraLoader()
# count total number of samples
total_samples = len(cond_encoded) * len(noise) * len(max_shift) * len(base_shift) * len(guidance) * len(sampler) * len(scheduler) * len(steps) * len(denoise) * lora_strength_len
current_sample = 0
if total_samples > 1:
pbar = ProgressBar(total_samples)
lora_strength_len = 1
if loras:
lora_strength_len = len(lora_strength[0])
for los in range(lora_strength_len):
if loras:
patched_model = self.loraloader.load_lora(model, None, lora_model[0], lora_strength[0][los], 0)[0]
else:
patched_model = model
for i in range(len(cond_encoded)):
conditioning = cond_encoded[i]
ct = cond_text[i] if cond_text else None
for n in noise:
randnoise = Noise_RandomNoise(n)
for ms in max_shift:
for bs in base_shift:
if is_schnell:
work_model = modelsamplingflux.patch_aura(patched_model, bs)[0]
else:
work_model = modelsamplingflux.patch(patched_model, ms, bs, width, height)[0]
for g in guidance:
cond = conditioning_set_values(conditioning, {"guidance": g})
guider = basicguider.get_guider(work_model, cond)[0]
for s in sampler:
samplerobj = comfy.samplers.sampler_object(s)
for sc in scheduler:
for st in steps:
for d in denoise:
sigmas = basicschedueler.get_sigmas(work_model, sc, st, d)[0]
current_sample += 1
log = f"Sampling {current_sample}/{total_samples} with seed {n}, sampler {s}, scheduler {sc}, steps {st}, guidance {g}, max_shift {ms}, base_shift {bs}, denoise {d}"
lora_name = None
lora_str = 0
if loras:
lora_name = lora_model[0]
lora_str = lora_strength[0][los]
log += f", lora {lora_name}, lora_strength {lora_str}"
logging.info(log)
start_time = time.time()
latent = samplercustomadvanced.sample(randnoise, guider, samplerobj, sigmas, latent_image)[1]
elapsed_time = time.time() - start_time
out_params.append({"time": elapsed_time,
"seed": n,
"width": width,
"height": height,
"sampler": s,
"scheduler": sc,
"steps": st,
"guidance": g,
"max_shift": ms,
"base_shift": bs,
"denoise": d,
"prompt": ct,
"lora": lora_name,
"lora_strength": lora_str})
if out_latent is None:
out_latent = latent
else:
out_latent = latentbatch.batch(out_latent, latent)[0]
if total_samples > 1:
pbar.update(1)
return (out_latent, out_params)
class PlotParameters:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"images": ("IMAGE", ),
"params": ("SAMPLER_PARAMS", ),
"order_by": (["none", "time", "seed", "steps", "denoise", "sampler", "scheduler", "guidance", "max_shift", "base_shift", "lora_strength"], ),
"cols_value": (["none", "time", "seed", "steps", "denoise", "sampler", "scheduler", "guidance", "max_shift", "base_shift", "lora_strength"], ),
"cols_num": ("INT", {"default": -1, "min": -1, "max": 1024 }),
"add_prompt": (["false", "true", "excerpt"], ),
"add_params": (["false", "true", "changes only"], {"default": "true"}),
}}
RETURN_TYPES = ("IMAGE", )
FUNCTION = "execute"
CATEGORY = "essentials/sampling"
def execute(self, images, params, order_by, cols_value, cols_num, add_prompt, add_params):
from PIL import Image, ImageDraw, ImageFont
import math
import textwrap
if images.shape[0] != len(params):
raise ValueError("Number of images and number of parameters do not match.")
_params = params.copy()
if order_by != "none":
sorted_params = sorted(_params, key=lambda x: x[order_by])
indices = [_params.index(item) for item in sorted_params]
images = images[torch.tensor(indices)]
_params = sorted_params
if cols_value != "none" and cols_num > -1:
groups = {}
for p in _params:
value = p[cols_value]
if value not in groups:
groups[value] = []
groups[value].append(p)
cols_num = len(groups)
sorted_params = []
groups = list(groups.values())
for g in zip(*groups):
sorted_params.extend(g)
indices = [_params.index(item) for item in sorted_params]
images = images[torch.tensor(indices)]
_params = sorted_params
elif cols_num == 0:
cols_num = int(math.sqrt(images.shape[0]))
cols_num = max(1, min(cols_num, 1024))
width = images.shape[2]
out_image = []
font = ImageFont.truetype(os.path.join(FONTS_DIR, 'ShareTechMono-Regular.ttf'), min(48, int(32*(width/1024))))
text_padding = 3
line_height = font.getmask('Q').getbbox()[3] + font.getmetrics()[1] + text_padding*2
char_width = font.getbbox('M')[2]+1 # using monospace font
if add_params == "changes only":
value_tracker = {}
for p in _params:
for key, value in p.items():
if key != "time":
if key not in value_tracker:
value_tracker[key] = set()
value_tracker[key].add(value)
changing_keys = {key for key, values in value_tracker.items() if len(values) > 1 or key == "prompt"}
result = []
for p in _params:
changing_params = {key: value for key, value in p.items() if key in changing_keys}
result.append(changing_params)
_params = result
for (image, param) in zip(images, _params):
image = image.permute(2, 0, 1)
if add_params != "false":
if add_params == "changes only":
text = "\n".join([f"{key}: {value}" for key, value in param.items() if key != "prompt"])
else:
text = f"time: {param['time']:.2f}s, seed: {param['seed']}, steps: {param['steps']}, size: {param['width']}Γ—{param['height']}\ndenoise: {param['denoise']}, sampler: {param['sampler']}, sched: {param['scheduler']}\nguidance: {param['guidance']}, max/base shift: {param['max_shift']}/{param['base_shift']}"
if 'lora' in param and param['lora']:
text += f"\nLoRA: {param['lora'][:32]}, str: {param['lora_strength']}"
lines = text.split("\n")
text_height = line_height * len(lines)
text_image = Image.new('RGB', (width, text_height), color=(0, 0, 0))
for i, line in enumerate(lines):
draw = ImageDraw.Draw(text_image)
draw.text((text_padding, i * line_height + text_padding), line, font=font, fill=(255, 255, 255))
text_image = T.ToTensor()(text_image).to(image.device)
image = torch.cat([image, text_image], 1)
if 'prompt' in param and param['prompt'] and add_prompt != "false":
prompt = param['prompt']
if add_prompt == "excerpt":
prompt = " ".join(param['prompt'].split()[:64])
prompt += "..."
cols = math.ceil(width / char_width)
prompt_lines = textwrap.wrap(prompt, width=cols)
prompt_height = line_height * len(prompt_lines)
prompt_image = Image.new('RGB', (width, prompt_height), color=(0, 0, 0))
for i, line in enumerate(prompt_lines):
draw = ImageDraw.Draw(prompt_image)
draw.text((text_padding, i * line_height + text_padding), line, font=font, fill=(255, 255, 255))
prompt_image = T.ToTensor()(prompt_image).to(image.device)
image = torch.cat([image, prompt_image], 1)
# a little cleanup
image = torch.nan_to_num(image, nan=0.0).clamp(0.0, 1.0)
out_image.append(image)
# ensure all images have the same height
if add_prompt != "false" or add_params == "changes only":
max_height = max([image.shape[1] for image in out_image])
out_image = [F.pad(image, (0, 0, 0, max_height - image.shape[1])) for image in out_image]
out_image = torch.stack(out_image, 0).permute(0, 2, 3, 1)
# merge images
if cols_num > -1:
cols = min(cols_num, out_image.shape[0])
b, h, w, c = out_image.shape
rows = math.ceil(b / cols)
# Pad the tensor if necessary
if b % cols != 0:
padding = cols - (b % cols)
out_image = F.pad(out_image, (0, 0, 0, 0, 0, 0, 0, padding))
b = out_image.shape[0]
# Reshape and transpose
out_image = out_image.reshape(rows, cols, h, w, c)
out_image = out_image.permute(0, 2, 1, 3, 4)
out_image = out_image.reshape(rows * h, cols * w, c).unsqueeze(0)
"""
width = out_image.shape[2]
# add the title and notes on top
if title and export_labels:
title_font = ImageFont.truetype(os.path.join(FONTS_DIR, 'ShareTechMono-Regular.ttf'), 48)
title_width = title_font.getbbox(title)[2]
title_padding = 6
title_line_height = title_font.getmask(title).getbbox()[3] + title_font.getmetrics()[1] + title_padding*2
title_text_height = title_line_height
title_text_image = Image.new('RGB', (width, title_text_height), color=(0, 0, 0, 0))
draw = ImageDraw.Draw(title_text_image)
draw.text((width//2 - title_width//2, title_padding), title, font=title_font, fill=(255, 255, 255))
title_text_image = T.ToTensor()(title_text_image).unsqueeze(0).permute([0,2,3,1]).to(out_image.device)
out_image = torch.cat([title_text_image, out_image], 1)
"""
return (out_image, )
class GuidanceTimestepping:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"value": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step": 0.05}),
"start_at": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01}),
"end_at": ("FLOAT", {"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.01}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "execute"
CATEGORY = "essentials/sampling"
def execute(self, model, value, start_at, end_at):
sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at)
sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at)
def apply_apg(args):
cond = args["cond"]
uncond = args["uncond"]
cond_scale = args["cond_scale"]
sigma = args["sigma"]
sigma = sigma.detach().cpu()[0].item()
if sigma <= sigma_start and sigma > sigma_end:
cond_scale = value
return uncond + (cond - uncond) * cond_scale
m = model.clone()
m.set_model_sampler_cfg_function(apply_apg)
return (m,)
class ModelSamplingDiscreteFlowCustom(torch.nn.Module):
def __init__(self, model_config=None):
super().__init__()
if model_config is not None:
sampling_settings = model_config.sampling_settings
else:
sampling_settings = {}
self.set_parameters(shift=sampling_settings.get("shift", 1.0), multiplier=sampling_settings.get("multiplier", 1000))
def set_parameters(self, shift=1.0, timesteps=1000, multiplier=1000, cut_off=1.0, shift_multiplier=0):
self.shift = shift
self.multiplier = multiplier
self.cut_off = cut_off
self.shift_multiplier = shift_multiplier
ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps) * multiplier)
self.register_buffer('sigmas', ts)
@property
def sigma_min(self):
return self.sigmas[0]
@property
def sigma_max(self):
return self.sigmas[-1]
def timestep(self, sigma):
return sigma * self.multiplier
def sigma(self, timestep):
shift = self.shift
if timestep.dim() == 0:
t = timestep.cpu().item() / self.multiplier
if t <= self.cut_off:
shift = shift * self.shift_multiplier
return comfy.model_sampling.time_snr_shift(shift, timestep / self.multiplier)
def percent_to_sigma(self, percent):
if percent <= 0.0:
return 1.0
if percent >= 1.0:
return 0.0
return 1.0 - percent
class ModelSamplingSD3Advanced:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"shift": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0, "step":0.01}),
"cut_off": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step":0.05}),
"shift_multiplier": ("FLOAT", {"default": 2, "min": 0, "max": 10, "step":0.05}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "execute"
CATEGORY = "essentials/sampling"
def execute(self, model, shift, multiplier=1000, cut_off=1.0, shift_multiplier=0):
m = model.clone()
sampling_base = ModelSamplingDiscreteFlowCustom
sampling_type = comfy.model_sampling.CONST
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
model_sampling = ModelSamplingAdvanced(model.model.model_config)
model_sampling.set_parameters(shift=shift, multiplier=multiplier, cut_off=cut_off, shift_multiplier=shift_multiplier)
m.add_object_patch("model_sampling", model_sampling)
return (m, )
SAMPLING_CLASS_MAPPINGS = {
"KSamplerVariationsStochastic+": KSamplerVariationsStochastic,
"KSamplerVariationsWithNoise+": KSamplerVariationsWithNoise,
"InjectLatentNoise+": InjectLatentNoise,
"FluxSamplerParams+": FluxSamplerParams,
"GuidanceTimestepping+": GuidanceTimestepping,
"PlotParameters+": PlotParameters,
"TextEncodeForSamplerParams+": TextEncodeForSamplerParams,
"SamplerSelectHelper+": SamplerSelectHelper,
"SchedulerSelectHelper+": SchedulerSelectHelper,
"LorasForFluxParams+": LorasForFluxParams,
"ModelSamplingSD3Advanced+": ModelSamplingSD3Advanced,
}
SAMPLING_NAME_MAPPINGS = {
"KSamplerVariationsStochastic+": "πŸ”§ KSampler Stochastic Variations",
"KSamplerVariationsWithNoise+": "πŸ”§ KSampler Variations with Noise Injection",
"InjectLatentNoise+": "πŸ”§ Inject Latent Noise",
"FluxSamplerParams+": "πŸ”§ Flux Sampler Parameters",
"GuidanceTimestepping+": "πŸ”§ Guidance Timestep (experimental)",
"PlotParameters+": "πŸ”§ Plot Sampler Parameters",
"TextEncodeForSamplerParams+": "πŸ”§Text Encode for Sampler Params",
"SamplerSelectHelper+": "πŸ”§ Sampler Select Helper",
"SchedulerSelectHelper+": "πŸ”§ Scheduler Select Helper",
"LorasForFluxParams+": "πŸ”§ LoRA for Flux Parameters",
"ModelSamplingSD3Advanced+": "πŸ”§ Model Sampling SD3 Advanced",
}