|
import math |
|
from dataclasses import dataclass |
|
|
|
import torch |
|
from torch import Tensor, nn |
|
|
|
from .math import attention, rope |
|
import comfy.ops |
|
import comfy.ldm.common_dit |
|
|
|
|
|
class EmbedND(nn.Module): |
|
def __init__(self, dim: int, theta: int, axes_dim: list): |
|
super().__init__() |
|
self.dim = dim |
|
self.theta = theta |
|
self.axes_dim = axes_dim |
|
|
|
def forward(self, ids: Tensor) -> Tensor: |
|
n_axes = ids.shape[-1] |
|
emb = torch.cat( |
|
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], |
|
dim=-3, |
|
) |
|
|
|
return emb.unsqueeze(1) |
|
|
|
|
|
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
t = time_factor * t |
|
half = dim // 2 |
|
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half) |
|
|
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
if torch.is_floating_point(t): |
|
embedding = embedding.to(t) |
|
return embedding |
|
|
|
class MLPEmbedder(nn.Module): |
|
def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.in_layer = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device) |
|
self.silu = nn.SiLU() |
|
self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return self.out_layer(self.silu(self.in_layer(x))) |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device)) |
|
|
|
def forward(self, x: Tensor): |
|
return comfy.ldm.common_dit.rms_norm(x, self.scale, 1e-6) |
|
|
|
|
|
class QKNorm(torch.nn.Module): |
|
def __init__(self, dim: int, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations) |
|
self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations) |
|
|
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple: |
|
q = self.query_norm(q) |
|
k = self.key_norm(k) |
|
return q.to(v), k.to(v) |
|
|
|
|
|
class SelfAttention(nn.Module): |
|
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
|
|
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) |
|
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) |
|
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device) |
|
|
|
|
|
@dataclass |
|
class ModulationOut: |
|
shift: Tensor |
|
scale: Tensor |
|
gate: Tensor |
|
|
|
|
|
class Modulation(nn.Module): |
|
def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.is_double = double |
|
self.multiplier = 6 if double else 3 |
|
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device) |
|
|
|
def forward(self, vec: Tensor) -> tuple: |
|
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) |
|
|
|
return ( |
|
ModulationOut(*out[:3]), |
|
ModulationOut(*out[3:]) if self.is_double else None, |
|
) |
|
|
|
|
|
class DoubleStreamBlock(nn.Module): |
|
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
|
|
mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
self.num_heads = num_heads |
|
self.hidden_size = hidden_size |
|
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) |
|
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) |
|
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations) |
|
|
|
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) |
|
self.img_mlp = nn.Sequential( |
|
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), |
|
nn.GELU(approximate="tanh"), |
|
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), |
|
) |
|
|
|
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) |
|
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) |
|
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations) |
|
|
|
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) |
|
self.txt_mlp = nn.Sequential( |
|
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), |
|
nn.GELU(approximate="tanh"), |
|
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), |
|
) |
|
|
|
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor): |
|
img_mod1, img_mod2 = self.img_mod(vec) |
|
txt_mod1, txt_mod2 = self.txt_mod(vec) |
|
|
|
|
|
img_modulated = self.img_norm1(img) |
|
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift |
|
img_qkv = self.img_attn.qkv(img_modulated) |
|
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) |
|
|
|
|
|
txt_modulated = self.txt_norm1(txt) |
|
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift |
|
txt_qkv = self.txt_attn.qkv(txt_modulated) |
|
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) |
|
|
|
|
|
attn = attention(torch.cat((txt_q, img_q), dim=2), |
|
torch.cat((txt_k, img_k), dim=2), |
|
torch.cat((txt_v, img_v), dim=2), pe=pe) |
|
|
|
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] |
|
|
|
|
|
img = img + img_mod1.gate * self.img_attn.proj(img_attn) |
|
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) |
|
|
|
|
|
txt += txt_mod1.gate * self.txt_attn.proj(txt_attn) |
|
txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) |
|
|
|
if txt.dtype == torch.float16: |
|
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504) |
|
|
|
return img, txt |
|
|
|
|
|
class SingleStreamBlock(nn.Module): |
|
""" |
|
A DiT block with parallel linear layers as described in |
|
https://arxiv.org/abs/2302.05442 and adapted modulation interface. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
qk_scale: float = None, |
|
dtype=None, |
|
device=None, |
|
operations=None |
|
): |
|
super().__init__() |
|
self.hidden_dim = hidden_size |
|
self.num_heads = num_heads |
|
head_dim = hidden_size // num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
self.mlp_hidden_dim = int(hidden_size * mlp_ratio) |
|
|
|
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device) |
|
|
|
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device) |
|
|
|
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) |
|
|
|
self.hidden_size = hidden_size |
|
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) |
|
|
|
self.mlp_act = nn.GELU(approximate="tanh") |
|
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations) |
|
|
|
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: |
|
mod, _ = self.modulation(vec) |
|
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift |
|
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) |
|
|
|
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k = self.norm(q, k, v) |
|
|
|
|
|
attn = attention(q, k, v, pe=pe) |
|
|
|
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) |
|
x += mod.gate * output |
|
if x.dtype == torch.float16: |
|
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504) |
|
return x |
|
|
|
|
|
class LastLayer(nn.Module): |
|
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) |
|
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) |
|
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device)) |
|
|
|
def forward(self, x: Tensor, vec: Tensor) -> Tensor: |
|
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) |
|
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] |
|
x = self.linear(x) |
|
return x |
|
|