|
import math |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn, einsum |
|
from einops import rearrange, repeat |
|
from typing import Optional |
|
import logging |
|
|
|
from .diffusionmodules.util import AlphaBlender, timestep_embedding |
|
from .sub_quadratic_attention import efficient_dot_product_attention |
|
|
|
from comfy import model_management |
|
|
|
if model_management.xformers_enabled(): |
|
import xformers |
|
import xformers.ops |
|
|
|
from comfy.cli_args import args |
|
import comfy.ops |
|
ops = comfy.ops.disable_weight_init |
|
|
|
FORCE_UPCAST_ATTENTION_DTYPE = model_management.force_upcast_attention_dtype() |
|
|
|
def get_attn_precision(attn_precision): |
|
if args.dont_upcast_attention: |
|
return None |
|
if FORCE_UPCAST_ATTENTION_DTYPE is not None: |
|
return FORCE_UPCAST_ATTENTION_DTYPE |
|
return attn_precision |
|
|
|
def exists(val): |
|
return val is not None |
|
|
|
|
|
def uniq(arr): |
|
return{el: True for el in arr}.keys() |
|
|
|
|
|
def default(val, d): |
|
if exists(val): |
|
return val |
|
return d |
|
|
|
|
|
def max_neg_value(t): |
|
return -torch.finfo(t.dtype).max |
|
|
|
|
|
def init_(tensor): |
|
dim = tensor.shape[-1] |
|
std = 1 / math.sqrt(dim) |
|
tensor.uniform_(-std, std) |
|
return tensor |
|
|
|
|
|
|
|
class GEGLU(nn.Module): |
|
def __init__(self, dim_in, dim_out, dtype=None, device=None, operations=ops): |
|
super().__init__() |
|
self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device) |
|
|
|
def forward(self, x): |
|
x, gate = self.proj(x).chunk(2, dim=-1) |
|
return x * F.gelu(gate) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=ops): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = default(dim_out, dim) |
|
project_in = nn.Sequential( |
|
operations.Linear(dim, inner_dim, dtype=dtype, device=device), |
|
nn.GELU() |
|
) if not glu else GEGLU(dim, inner_dim, dtype=dtype, device=device, operations=operations) |
|
|
|
self.net = nn.Sequential( |
|
project_in, |
|
nn.Dropout(dropout), |
|
operations.Linear(inner_dim, dim_out, dtype=dtype, device=device) |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
def Normalize(in_channels, dtype=None, device=None): |
|
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device) |
|
|
|
def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): |
|
attn_precision = get_attn_precision(attn_precision) |
|
|
|
if skip_reshape: |
|
b, _, _, dim_head = q.shape |
|
else: |
|
b, _, dim_head = q.shape |
|
dim_head //= heads |
|
|
|
scale = dim_head ** -0.5 |
|
|
|
h = heads |
|
if skip_reshape: |
|
q, k, v = map( |
|
lambda t: t.reshape(b * heads, -1, dim_head), |
|
(q, k, v), |
|
) |
|
else: |
|
q, k, v = map( |
|
lambda t: t.unsqueeze(3) |
|
.reshape(b, -1, heads, dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b * heads, -1, dim_head) |
|
.contiguous(), |
|
(q, k, v), |
|
) |
|
|
|
|
|
if attn_precision == torch.float32: |
|
sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale |
|
else: |
|
sim = einsum('b i d, b j d -> b i j', q, k) * scale |
|
|
|
del q, k |
|
|
|
if exists(mask): |
|
if mask.dtype == torch.bool: |
|
mask = rearrange(mask, 'b ... -> b (...)') |
|
max_neg_value = -torch.finfo(sim.dtype).max |
|
mask = repeat(mask, 'b j -> (b h) () j', h=h) |
|
sim.masked_fill_(~mask, max_neg_value) |
|
else: |
|
if len(mask.shape) == 2: |
|
bs = 1 |
|
else: |
|
bs = mask.shape[0] |
|
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1]) |
|
sim.add_(mask) |
|
|
|
|
|
sim = sim.softmax(dim=-1) |
|
|
|
out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v) |
|
out = ( |
|
out.unsqueeze(0) |
|
.reshape(b, heads, -1, dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b, -1, heads * dim_head) |
|
) |
|
return out |
|
|
|
|
|
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False): |
|
attn_precision = get_attn_precision(attn_precision) |
|
|
|
if skip_reshape: |
|
b, _, _, dim_head = query.shape |
|
else: |
|
b, _, dim_head = query.shape |
|
dim_head //= heads |
|
|
|
scale = dim_head ** -0.5 |
|
|
|
if skip_reshape: |
|
query = query.reshape(b * heads, -1, dim_head) |
|
value = value.reshape(b * heads, -1, dim_head) |
|
key = key.reshape(b * heads, -1, dim_head).movedim(1, 2) |
|
else: |
|
query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head) |
|
value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head) |
|
key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1) |
|
|
|
|
|
dtype = query.dtype |
|
upcast_attention = attn_precision == torch.float32 and query.dtype != torch.float32 |
|
if upcast_attention: |
|
bytes_per_token = torch.finfo(torch.float32).bits//8 |
|
else: |
|
bytes_per_token = torch.finfo(query.dtype).bits//8 |
|
batch_x_heads, q_tokens, _ = query.shape |
|
_, _, k_tokens = key.shape |
|
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens |
|
|
|
mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True) |
|
|
|
kv_chunk_size_min = None |
|
kv_chunk_size = None |
|
query_chunk_size = None |
|
|
|
for x in [4096, 2048, 1024, 512, 256]: |
|
count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0) |
|
if count >= k_tokens: |
|
kv_chunk_size = k_tokens |
|
query_chunk_size = x |
|
break |
|
|
|
if query_chunk_size is None: |
|
query_chunk_size = 512 |
|
|
|
if mask is not None: |
|
if len(mask.shape) == 2: |
|
bs = 1 |
|
else: |
|
bs = mask.shape[0] |
|
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1]) |
|
|
|
hidden_states = efficient_dot_product_attention( |
|
query, |
|
key, |
|
value, |
|
query_chunk_size=query_chunk_size, |
|
kv_chunk_size=kv_chunk_size, |
|
kv_chunk_size_min=kv_chunk_size_min, |
|
use_checkpoint=False, |
|
upcast_attention=upcast_attention, |
|
mask=mask, |
|
) |
|
|
|
hidden_states = hidden_states.to(dtype) |
|
|
|
hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2) |
|
return hidden_states |
|
|
|
def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): |
|
attn_precision = get_attn_precision(attn_precision) |
|
|
|
if skip_reshape: |
|
b, _, _, dim_head = q.shape |
|
else: |
|
b, _, dim_head = q.shape |
|
dim_head //= heads |
|
|
|
scale = dim_head ** -0.5 |
|
|
|
h = heads |
|
if skip_reshape: |
|
q, k, v = map( |
|
lambda t: t.reshape(b * heads, -1, dim_head), |
|
(q, k, v), |
|
) |
|
else: |
|
q, k, v = map( |
|
lambda t: t.unsqueeze(3) |
|
.reshape(b, -1, heads, dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b * heads, -1, dim_head) |
|
.contiguous(), |
|
(q, k, v), |
|
) |
|
|
|
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) |
|
|
|
mem_free_total = model_management.get_free_memory(q.device) |
|
|
|
if attn_precision == torch.float32: |
|
element_size = 4 |
|
upcast = True |
|
else: |
|
element_size = q.element_size() |
|
upcast = False |
|
|
|
gb = 1024 ** 3 |
|
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size |
|
modifier = 3 |
|
mem_required = tensor_size * modifier |
|
steps = 1 |
|
|
|
|
|
if mem_required > mem_free_total: |
|
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) |
|
|
|
|
|
|
|
if steps > 64: |
|
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 |
|
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' |
|
f'Need: {mem_required/64/gb:0.1f}GB free, Have:{mem_free_total/gb:0.1f}GB free') |
|
|
|
if mask is not None: |
|
if len(mask.shape) == 2: |
|
bs = 1 |
|
else: |
|
bs = mask.shape[0] |
|
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1]) |
|
|
|
|
|
first_op_done = False |
|
cleared_cache = False |
|
while True: |
|
try: |
|
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] |
|
for i in range(0, q.shape[1], slice_size): |
|
end = i + slice_size |
|
if upcast: |
|
with torch.autocast(enabled=False, device_type = 'cuda'): |
|
s1 = einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale |
|
else: |
|
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale |
|
|
|
if mask is not None: |
|
if len(mask.shape) == 2: |
|
s1 += mask[i:end] |
|
else: |
|
if mask.shape[1] == 1: |
|
s1 += mask |
|
else: |
|
s1 += mask[:, i:end] |
|
|
|
s2 = s1.softmax(dim=-1).to(v.dtype) |
|
del s1 |
|
first_op_done = True |
|
|
|
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) |
|
del s2 |
|
break |
|
except model_management.OOM_EXCEPTION as e: |
|
if first_op_done == False: |
|
model_management.soft_empty_cache(True) |
|
if cleared_cache == False: |
|
cleared_cache = True |
|
logging.warning("out of memory error, emptying cache and trying again") |
|
continue |
|
steps *= 2 |
|
if steps > 64: |
|
raise e |
|
logging.warning("out of memory error, increasing steps and trying again {}".format(steps)) |
|
else: |
|
raise e |
|
|
|
del q, k, v |
|
|
|
r1 = ( |
|
r1.unsqueeze(0) |
|
.reshape(b, heads, -1, dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b, -1, heads * dim_head) |
|
) |
|
return r1 |
|
|
|
BROKEN_XFORMERS = False |
|
try: |
|
x_vers = xformers.__version__ |
|
|
|
BROKEN_XFORMERS = x_vers.startswith("0.0.2") and not x_vers.startswith("0.0.20") |
|
except: |
|
pass |
|
|
|
def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): |
|
if skip_reshape: |
|
b, _, _, dim_head = q.shape |
|
else: |
|
b, _, dim_head = q.shape |
|
dim_head //= heads |
|
|
|
disabled_xformers = False |
|
|
|
if BROKEN_XFORMERS: |
|
if b * heads > 65535: |
|
disabled_xformers = True |
|
|
|
if not disabled_xformers: |
|
if torch.jit.is_tracing() or torch.jit.is_scripting(): |
|
disabled_xformers = True |
|
|
|
if disabled_xformers: |
|
return attention_pytorch(q, k, v, heads, mask, skip_reshape=skip_reshape) |
|
|
|
if skip_reshape: |
|
q, k, v = map( |
|
lambda t: t.reshape(b * heads, -1, dim_head), |
|
(q, k, v), |
|
) |
|
else: |
|
q, k, v = map( |
|
lambda t: t.reshape(b, -1, heads, dim_head), |
|
(q, k, v), |
|
) |
|
|
|
if mask is not None: |
|
pad = 8 - mask.shape[-1] % 8 |
|
mask_out = torch.empty([q.shape[0], q.shape[2], q.shape[1], mask.shape[-1] + pad], dtype=q.dtype, device=q.device) |
|
mask_out[..., :mask.shape[-1]] = mask |
|
mask = mask_out[..., :mask.shape[-1]] |
|
|
|
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask) |
|
|
|
if skip_reshape: |
|
out = ( |
|
out.unsqueeze(0) |
|
.reshape(b, heads, -1, dim_head) |
|
.permute(0, 2, 1, 3) |
|
.reshape(b, -1, heads * dim_head) |
|
) |
|
else: |
|
out = ( |
|
out.reshape(b, -1, heads * dim_head) |
|
) |
|
|
|
return out |
|
|
|
if model_management.is_nvidia(): |
|
SDP_BATCH_LIMIT = 2**15 |
|
else: |
|
|
|
SDP_BATCH_LIMIT = 2**31 |
|
|
|
|
|
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): |
|
if skip_reshape: |
|
b, _, _, dim_head = q.shape |
|
else: |
|
b, _, dim_head = q.shape |
|
dim_head //= heads |
|
q, k, v = map( |
|
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2), |
|
(q, k, v), |
|
) |
|
|
|
if SDP_BATCH_LIMIT >= q.shape[0]: |
|
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False) |
|
out = ( |
|
out.transpose(1, 2).reshape(b, -1, heads * dim_head) |
|
) |
|
else: |
|
out = torch.empty((q.shape[0], q.shape[2], heads * dim_head), dtype=q.dtype, layout=q.layout, device=q.device) |
|
for i in range(0, q.shape[0], SDP_BATCH_LIMIT): |
|
out[i : i + SDP_BATCH_LIMIT] = torch.nn.functional.scaled_dot_product_attention(q[i : i + SDP_BATCH_LIMIT], k[i : i + SDP_BATCH_LIMIT], v[i : i + SDP_BATCH_LIMIT], attn_mask=mask, dropout_p=0.0, is_causal=False).transpose(1, 2).reshape(-1, q.shape[2], heads * dim_head) |
|
return out |
|
|
|
|
|
optimized_attention = attention_basic |
|
|
|
if model_management.xformers_enabled(): |
|
logging.info("Using xformers cross attention") |
|
optimized_attention = attention_xformers |
|
elif model_management.pytorch_attention_enabled(): |
|
logging.info("Using pytorch cross attention") |
|
optimized_attention = attention_pytorch |
|
else: |
|
if args.use_split_cross_attention: |
|
logging.info("Using split optimization for cross attention") |
|
optimized_attention = attention_split |
|
else: |
|
logging.info("Using sub quadratic optimization for cross attention, if you have memory or speed issues try using: --use-split-cross-attention") |
|
optimized_attention = attention_sub_quad |
|
|
|
optimized_attention_masked = optimized_attention |
|
|
|
def optimized_attention_for_device(device, mask=False, small_input=False): |
|
if small_input: |
|
if model_management.pytorch_attention_enabled(): |
|
return attention_pytorch |
|
else: |
|
return attention_basic |
|
|
|
if device == torch.device("cpu"): |
|
return attention_sub_quad |
|
|
|
if mask: |
|
return optimized_attention_masked |
|
|
|
return optimized_attention |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=ops): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
context_dim = default(context_dim, query_dim) |
|
self.attn_precision = attn_precision |
|
|
|
self.heads = heads |
|
self.dim_head = dim_head |
|
|
|
self.to_q = operations.Linear(query_dim, inner_dim, bias=False, dtype=dtype, device=device) |
|
self.to_k = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) |
|
self.to_v = operations.Linear(context_dim, inner_dim, bias=False, dtype=dtype, device=device) |
|
|
|
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout)) |
|
|
|
def forward(self, x, context=None, value=None, mask=None): |
|
q = self.to_q(x) |
|
context = default(context, x) |
|
k = self.to_k(context) |
|
if value is not None: |
|
v = self.to_v(value) |
|
del value |
|
else: |
|
v = self.to_v(context) |
|
|
|
if mask is None: |
|
out = optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision) |
|
else: |
|
out = optimized_attention_masked(q, k, v, self.heads, mask, attn_precision=self.attn_precision) |
|
return self.to_out(out) |
|
|
|
|
|
class BasicTransformerBlock(nn.Module): |
|
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, ff_in=False, inner_dim=None, |
|
disable_self_attn=False, disable_temporal_crossattention=False, switch_temporal_ca_to_sa=False, attn_precision=None, dtype=None, device=None, operations=ops): |
|
super().__init__() |
|
|
|
self.ff_in = ff_in or inner_dim is not None |
|
if inner_dim is None: |
|
inner_dim = dim |
|
|
|
self.is_res = inner_dim == dim |
|
self.attn_precision = attn_precision |
|
|
|
if self.ff_in: |
|
self.norm_in = operations.LayerNorm(dim, dtype=dtype, device=device) |
|
self.ff_in = FeedForward(dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations) |
|
|
|
self.disable_self_attn = disable_self_attn |
|
self.attn1 = CrossAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout, |
|
context_dim=context_dim if self.disable_self_attn else None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) |
|
self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff, dtype=dtype, device=device, operations=operations) |
|
|
|
if disable_temporal_crossattention: |
|
if switch_temporal_ca_to_sa: |
|
raise ValueError |
|
else: |
|
self.attn2 = None |
|
else: |
|
context_dim_attn2 = None |
|
if not switch_temporal_ca_to_sa: |
|
context_dim_attn2 = context_dim |
|
|
|
self.attn2 = CrossAttention(query_dim=inner_dim, context_dim=context_dim_attn2, |
|
heads=n_heads, dim_head=d_head, dropout=dropout, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations) |
|
self.norm2 = operations.LayerNorm(inner_dim, dtype=dtype, device=device) |
|
|
|
self.norm1 = operations.LayerNorm(inner_dim, dtype=dtype, device=device) |
|
self.norm3 = operations.LayerNorm(inner_dim, dtype=dtype, device=device) |
|
self.n_heads = n_heads |
|
self.d_head = d_head |
|
self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa |
|
|
|
def forward(self, x, context=None, transformer_options={}): |
|
extra_options = {} |
|
block = transformer_options.get("block", None) |
|
block_index = transformer_options.get("block_index", 0) |
|
transformer_patches = {} |
|
transformer_patches_replace = {} |
|
|
|
for k in transformer_options: |
|
if k == "patches": |
|
transformer_patches = transformer_options[k] |
|
elif k == "patches_replace": |
|
transformer_patches_replace = transformer_options[k] |
|
else: |
|
extra_options[k] = transformer_options[k] |
|
|
|
extra_options["n_heads"] = self.n_heads |
|
extra_options["dim_head"] = self.d_head |
|
extra_options["attn_precision"] = self.attn_precision |
|
|
|
if self.ff_in: |
|
x_skip = x |
|
x = self.ff_in(self.norm_in(x)) |
|
if self.is_res: |
|
x += x_skip |
|
|
|
n = self.norm1(x) |
|
if self.disable_self_attn: |
|
context_attn1 = context |
|
else: |
|
context_attn1 = None |
|
value_attn1 = None |
|
|
|
if "attn1_patch" in transformer_patches: |
|
patch = transformer_patches["attn1_patch"] |
|
if context_attn1 is None: |
|
context_attn1 = n |
|
value_attn1 = context_attn1 |
|
for p in patch: |
|
n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options) |
|
|
|
if block is not None: |
|
transformer_block = (block[0], block[1], block_index) |
|
else: |
|
transformer_block = None |
|
attn1_replace_patch = transformer_patches_replace.get("attn1", {}) |
|
block_attn1 = transformer_block |
|
if block_attn1 not in attn1_replace_patch: |
|
block_attn1 = block |
|
|
|
if block_attn1 in attn1_replace_patch: |
|
if context_attn1 is None: |
|
context_attn1 = n |
|
value_attn1 = n |
|
n = self.attn1.to_q(n) |
|
context_attn1 = self.attn1.to_k(context_attn1) |
|
value_attn1 = self.attn1.to_v(value_attn1) |
|
n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options) |
|
n = self.attn1.to_out(n) |
|
else: |
|
n = self.attn1(n, context=context_attn1, value=value_attn1) |
|
|
|
if "attn1_output_patch" in transformer_patches: |
|
patch = transformer_patches["attn1_output_patch"] |
|
for p in patch: |
|
n = p(n, extra_options) |
|
|
|
x += n |
|
if "middle_patch" in transformer_patches: |
|
patch = transformer_patches["middle_patch"] |
|
for p in patch: |
|
x = p(x, extra_options) |
|
|
|
if self.attn2 is not None: |
|
n = self.norm2(x) |
|
if self.switch_temporal_ca_to_sa: |
|
context_attn2 = n |
|
else: |
|
context_attn2 = context |
|
value_attn2 = None |
|
if "attn2_patch" in transformer_patches: |
|
patch = transformer_patches["attn2_patch"] |
|
value_attn2 = context_attn2 |
|
for p in patch: |
|
n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options) |
|
|
|
attn2_replace_patch = transformer_patches_replace.get("attn2", {}) |
|
block_attn2 = transformer_block |
|
if block_attn2 not in attn2_replace_patch: |
|
block_attn2 = block |
|
|
|
if block_attn2 in attn2_replace_patch: |
|
if value_attn2 is None: |
|
value_attn2 = context_attn2 |
|
n = self.attn2.to_q(n) |
|
context_attn2 = self.attn2.to_k(context_attn2) |
|
value_attn2 = self.attn2.to_v(value_attn2) |
|
n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options) |
|
n = self.attn2.to_out(n) |
|
else: |
|
n = self.attn2(n, context=context_attn2, value=value_attn2) |
|
|
|
if "attn2_output_patch" in transformer_patches: |
|
patch = transformer_patches["attn2_output_patch"] |
|
for p in patch: |
|
n = p(n, extra_options) |
|
|
|
x += n |
|
if self.is_res: |
|
x_skip = x |
|
x = self.ff(self.norm3(x)) |
|
if self.is_res: |
|
x += x_skip |
|
|
|
return x |
|
|
|
|
|
class SpatialTransformer(nn.Module): |
|
""" |
|
Transformer block for image-like data. |
|
First, project the input (aka embedding) |
|
and reshape to b, t, d. |
|
Then apply standard transformer action. |
|
Finally, reshape to image |
|
NEW: use_linear for more efficiency instead of the 1x1 convs |
|
""" |
|
def __init__(self, in_channels, n_heads, d_head, |
|
depth=1, dropout=0., context_dim=None, |
|
disable_self_attn=False, use_linear=False, |
|
use_checkpoint=True, attn_precision=None, dtype=None, device=None, operations=ops): |
|
super().__init__() |
|
if exists(context_dim) and not isinstance(context_dim, list): |
|
context_dim = [context_dim] * depth |
|
self.in_channels = in_channels |
|
inner_dim = n_heads * d_head |
|
self.norm = operations.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device) |
|
if not use_linear: |
|
self.proj_in = operations.Conv2d(in_channels, |
|
inner_dim, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, dtype=dtype, device=device) |
|
else: |
|
self.proj_in = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], |
|
disable_self_attn=disable_self_attn, checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations) |
|
for d in range(depth)] |
|
) |
|
if not use_linear: |
|
self.proj_out = operations.Conv2d(inner_dim,in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, dtype=dtype, device=device) |
|
else: |
|
self.proj_out = operations.Linear(in_channels, inner_dim, dtype=dtype, device=device) |
|
self.use_linear = use_linear |
|
|
|
def forward(self, x, context=None, transformer_options={}): |
|
|
|
if not isinstance(context, list): |
|
context = [context] * len(self.transformer_blocks) |
|
b, c, h, w = x.shape |
|
x_in = x |
|
x = self.norm(x) |
|
if not self.use_linear: |
|
x = self.proj_in(x) |
|
x = x.movedim(1, 3).flatten(1, 2).contiguous() |
|
if self.use_linear: |
|
x = self.proj_in(x) |
|
for i, block in enumerate(self.transformer_blocks): |
|
transformer_options["block_index"] = i |
|
x = block(x, context=context[i], transformer_options=transformer_options) |
|
if self.use_linear: |
|
x = self.proj_out(x) |
|
x = x.reshape(x.shape[0], h, w, x.shape[-1]).movedim(3, 1).contiguous() |
|
if not self.use_linear: |
|
x = self.proj_out(x) |
|
return x + x_in |
|
|
|
|
|
class SpatialVideoTransformer(SpatialTransformer): |
|
def __init__( |
|
self, |
|
in_channels, |
|
n_heads, |
|
d_head, |
|
depth=1, |
|
dropout=0.0, |
|
use_linear=False, |
|
context_dim=None, |
|
use_spatial_context=False, |
|
timesteps=None, |
|
merge_strategy: str = "fixed", |
|
merge_factor: float = 0.5, |
|
time_context_dim=None, |
|
ff_in=False, |
|
checkpoint=False, |
|
time_depth=1, |
|
disable_self_attn=False, |
|
disable_temporal_crossattention=False, |
|
max_time_embed_period: int = 10000, |
|
attn_precision=None, |
|
dtype=None, device=None, operations=ops |
|
): |
|
super().__init__( |
|
in_channels, |
|
n_heads, |
|
d_head, |
|
depth=depth, |
|
dropout=dropout, |
|
use_checkpoint=checkpoint, |
|
context_dim=context_dim, |
|
use_linear=use_linear, |
|
disable_self_attn=disable_self_attn, |
|
attn_precision=attn_precision, |
|
dtype=dtype, device=device, operations=operations |
|
) |
|
self.time_depth = time_depth |
|
self.depth = depth |
|
self.max_time_embed_period = max_time_embed_period |
|
|
|
time_mix_d_head = d_head |
|
n_time_mix_heads = n_heads |
|
|
|
time_mix_inner_dim = int(time_mix_d_head * n_time_mix_heads) |
|
|
|
inner_dim = n_heads * d_head |
|
if use_spatial_context: |
|
time_context_dim = context_dim |
|
|
|
self.time_stack = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
n_time_mix_heads, |
|
time_mix_d_head, |
|
dropout=dropout, |
|
context_dim=time_context_dim, |
|
|
|
checkpoint=checkpoint, |
|
ff_in=ff_in, |
|
inner_dim=time_mix_inner_dim, |
|
disable_self_attn=disable_self_attn, |
|
disable_temporal_crossattention=disable_temporal_crossattention, |
|
attn_precision=attn_precision, |
|
dtype=dtype, device=device, operations=operations |
|
) |
|
for _ in range(self.depth) |
|
] |
|
) |
|
|
|
assert len(self.time_stack) == len(self.transformer_blocks) |
|
|
|
self.use_spatial_context = use_spatial_context |
|
self.in_channels = in_channels |
|
|
|
time_embed_dim = self.in_channels * 4 |
|
self.time_pos_embed = nn.Sequential( |
|
operations.Linear(self.in_channels, time_embed_dim, dtype=dtype, device=device), |
|
nn.SiLU(), |
|
operations.Linear(time_embed_dim, self.in_channels, dtype=dtype, device=device), |
|
) |
|
|
|
self.time_mixer = AlphaBlender( |
|
alpha=merge_factor, merge_strategy=merge_strategy |
|
) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
context: Optional[torch.Tensor] = None, |
|
time_context: Optional[torch.Tensor] = None, |
|
timesteps: Optional[int] = None, |
|
image_only_indicator: Optional[torch.Tensor] = None, |
|
transformer_options={} |
|
) -> torch.Tensor: |
|
_, _, h, w = x.shape |
|
x_in = x |
|
spatial_context = None |
|
if exists(context): |
|
spatial_context = context |
|
|
|
if self.use_spatial_context: |
|
assert ( |
|
context.ndim == 3 |
|
), f"n dims of spatial context should be 3 but are {context.ndim}" |
|
|
|
if time_context is None: |
|
time_context = context |
|
time_context_first_timestep = time_context[::timesteps] |
|
time_context = repeat( |
|
time_context_first_timestep, "b ... -> (b n) ...", n=h * w |
|
) |
|
elif time_context is not None and not self.use_spatial_context: |
|
time_context = repeat(time_context, "b ... -> (b n) ...", n=h * w) |
|
if time_context.ndim == 2: |
|
time_context = rearrange(time_context, "b c -> b 1 c") |
|
|
|
x = self.norm(x) |
|
if not self.use_linear: |
|
x = self.proj_in(x) |
|
x = rearrange(x, "b c h w -> b (h w) c") |
|
if self.use_linear: |
|
x = self.proj_in(x) |
|
|
|
num_frames = torch.arange(timesteps, device=x.device) |
|
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps) |
|
num_frames = rearrange(num_frames, "b t -> (b t)") |
|
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False, max_period=self.max_time_embed_period).to(x.dtype) |
|
emb = self.time_pos_embed(t_emb) |
|
emb = emb[:, None, :] |
|
|
|
for it_, (block, mix_block) in enumerate( |
|
zip(self.transformer_blocks, self.time_stack) |
|
): |
|
transformer_options["block_index"] = it_ |
|
x = block( |
|
x, |
|
context=spatial_context, |
|
transformer_options=transformer_options, |
|
) |
|
|
|
x_mix = x |
|
x_mix = x_mix + emb |
|
|
|
B, S, C = x_mix.shape |
|
x_mix = rearrange(x_mix, "(b t) s c -> (b s) t c", t=timesteps) |
|
x_mix = mix_block(x_mix, context=time_context) |
|
x_mix = rearrange( |
|
x_mix, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps |
|
) |
|
|
|
x = self.time_mixer(x_spatial=x, x_temporal=x_mix, image_only_indicator=image_only_indicator) |
|
|
|
if self.use_linear: |
|
x = self.proj_out(x) |
|
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w) |
|
if not self.use_linear: |
|
x = self.proj_out(x) |
|
out = x + x_in |
|
return out |
|
|
|
|
|
|