|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from einops import repeat, rearrange |
|
|
|
from comfy.ldm.util import instantiate_from_config |
|
|
|
class AlphaBlender(nn.Module): |
|
strategies = ["learned", "fixed", "learned_with_images"] |
|
|
|
def __init__( |
|
self, |
|
alpha: float, |
|
merge_strategy: str = "learned_with_images", |
|
rearrange_pattern: str = "b t -> (b t) 1 1", |
|
): |
|
super().__init__() |
|
self.merge_strategy = merge_strategy |
|
self.rearrange_pattern = rearrange_pattern |
|
|
|
assert ( |
|
merge_strategy in self.strategies |
|
), f"merge_strategy needs to be in {self.strategies}" |
|
|
|
if self.merge_strategy == "fixed": |
|
self.register_buffer("mix_factor", torch.Tensor([alpha])) |
|
elif ( |
|
self.merge_strategy == "learned" |
|
or self.merge_strategy == "learned_with_images" |
|
): |
|
self.register_parameter( |
|
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha])) |
|
) |
|
else: |
|
raise ValueError(f"unknown merge strategy {self.merge_strategy}") |
|
|
|
def get_alpha(self, image_only_indicator: torch.Tensor, device) -> torch.Tensor: |
|
|
|
if self.merge_strategy == "fixed": |
|
|
|
|
|
alpha = self.mix_factor.to(device) |
|
elif self.merge_strategy == "learned": |
|
alpha = torch.sigmoid(self.mix_factor.to(device)) |
|
|
|
|
|
elif self.merge_strategy == "learned_with_images": |
|
if image_only_indicator is None: |
|
alpha = rearrange(torch.sigmoid(self.mix_factor.to(device)), "... -> ... 1") |
|
else: |
|
alpha = torch.where( |
|
image_only_indicator.bool(), |
|
torch.ones(1, 1, device=image_only_indicator.device), |
|
rearrange(torch.sigmoid(self.mix_factor.to(image_only_indicator.device)), "... -> ... 1"), |
|
) |
|
alpha = rearrange(alpha, self.rearrange_pattern) |
|
|
|
|
|
else: |
|
raise NotImplementedError() |
|
return alpha |
|
|
|
def forward( |
|
self, |
|
x_spatial, |
|
x_temporal, |
|
image_only_indicator=None, |
|
) -> torch.Tensor: |
|
alpha = self.get_alpha(image_only_indicator, x_spatial.device) |
|
x = ( |
|
alpha.to(x_spatial.dtype) * x_spatial |
|
+ (1.0 - alpha).to(x_spatial.dtype) * x_temporal |
|
) |
|
return x |
|
|
|
|
|
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): |
|
if schedule == "linear": |
|
betas = ( |
|
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 |
|
) |
|
|
|
elif schedule == "cosine": |
|
timesteps = ( |
|
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s |
|
) |
|
alphas = timesteps / (1 + cosine_s) * np.pi / 2 |
|
alphas = torch.cos(alphas).pow(2) |
|
alphas = alphas / alphas[0] |
|
betas = 1 - alphas[1:] / alphas[:-1] |
|
betas = torch.clamp(betas, min=0, max=0.999) |
|
|
|
elif schedule == "squaredcos_cap_v2": |
|
|
|
return betas_for_alpha_bar( |
|
n_timestep, |
|
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, |
|
) |
|
|
|
elif schedule == "sqrt_linear": |
|
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) |
|
elif schedule == "sqrt": |
|
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5 |
|
else: |
|
raise ValueError(f"schedule '{schedule}' unknown.") |
|
return betas |
|
|
|
|
|
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True): |
|
if ddim_discr_method == 'uniform': |
|
c = num_ddpm_timesteps // num_ddim_timesteps |
|
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c))) |
|
elif ddim_discr_method == 'quad': |
|
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int) |
|
else: |
|
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"') |
|
|
|
|
|
|
|
steps_out = ddim_timesteps + 1 |
|
if verbose: |
|
print(f'Selected timesteps for ddim sampler: {steps_out}') |
|
return steps_out |
|
|
|
|
|
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True): |
|
|
|
alphas = alphacums[ddim_timesteps] |
|
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist()) |
|
|
|
|
|
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev)) |
|
if verbose: |
|
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}') |
|
print(f'For the chosen value of eta, which is {eta}, ' |
|
f'this results in the following sigma_t schedule for ddim sampler {sigmas}') |
|
return sigmas, alphas, alphas_prev |
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, |
|
which defines the cumulative product of (1-beta) over time from t = [0,1]. |
|
:param num_diffusion_timesteps: the number of betas to produce. |
|
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and |
|
produces the cumulative product of (1-beta) up to that |
|
part of the diffusion process. |
|
:param max_beta: the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
""" |
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return np.array(betas) |
|
|
|
|
|
def extract_into_tensor(a, t, x_shape): |
|
b, *_ = t.shape |
|
out = a.gather(-1, t) |
|
return out.reshape(b, *((1,) * (len(x_shape) - 1))) |
|
|
|
|
|
def checkpoint(func, inputs, params, flag): |
|
""" |
|
Evaluate a function without caching intermediate activations, allowing for |
|
reduced memory at the expense of extra compute in the backward pass. |
|
:param func: the function to evaluate. |
|
:param inputs: the argument sequence to pass to `func`. |
|
:param params: a sequence of parameters `func` depends on but does not |
|
explicitly take as arguments. |
|
:param flag: if False, disable gradient checkpointing. |
|
""" |
|
if flag: |
|
args = tuple(inputs) + tuple(params) |
|
return CheckpointFunction.apply(func, len(inputs), *args) |
|
else: |
|
return func(*inputs) |
|
|
|
|
|
class CheckpointFunction(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, run_function, length, *args): |
|
ctx.run_function = run_function |
|
ctx.input_tensors = list(args[:length]) |
|
ctx.input_params = list(args[length:]) |
|
ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(), |
|
"dtype": torch.get_autocast_gpu_dtype(), |
|
"cache_enabled": torch.is_autocast_cache_enabled()} |
|
with torch.no_grad(): |
|
output_tensors = ctx.run_function(*ctx.input_tensors) |
|
return output_tensors |
|
|
|
@staticmethod |
|
def backward(ctx, *output_grads): |
|
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] |
|
with torch.enable_grad(), \ |
|
torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs): |
|
|
|
|
|
|
|
shallow_copies = [x.view_as(x) for x in ctx.input_tensors] |
|
output_tensors = ctx.run_function(*shallow_copies) |
|
input_grads = torch.autograd.grad( |
|
output_tensors, |
|
ctx.input_tensors + ctx.input_params, |
|
output_grads, |
|
allow_unused=True, |
|
) |
|
del ctx.input_tensors |
|
del ctx.input_params |
|
del output_tensors |
|
return (None, None) + input_grads |
|
|
|
|
|
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param timesteps: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an [N x dim] Tensor of positional embeddings. |
|
""" |
|
if not repeat_only: |
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half |
|
) |
|
args = timesteps[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
else: |
|
embedding = repeat(timesteps, 'b -> b d', d=dim) |
|
return embedding |
|
|
|
|
|
def zero_module(module): |
|
""" |
|
Zero out the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
def scale_module(module, scale): |
|
""" |
|
Scale the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().mul_(scale) |
|
return module |
|
|
|
|
|
def mean_flat(tensor): |
|
""" |
|
Take the mean over all non-batch dimensions. |
|
""" |
|
return tensor.mean(dim=list(range(1, len(tensor.shape)))) |
|
|
|
|
|
def avg_pool_nd(dims, *args, **kwargs): |
|
""" |
|
Create a 1D, 2D, or 3D average pooling module. |
|
""" |
|
if dims == 1: |
|
return nn.AvgPool1d(*args, **kwargs) |
|
elif dims == 2: |
|
return nn.AvgPool2d(*args, **kwargs) |
|
elif dims == 3: |
|
return nn.AvgPool3d(*args, **kwargs) |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
class HybridConditioner(nn.Module): |
|
|
|
def __init__(self, c_concat_config, c_crossattn_config): |
|
super().__init__() |
|
self.concat_conditioner = instantiate_from_config(c_concat_config) |
|
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config) |
|
|
|
def forward(self, c_concat, c_crossattn): |
|
c_concat = self.concat_conditioner(c_concat) |
|
c_crossattn = self.crossattn_conditioner(c_crossattn) |
|
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]} |
|
|
|
|
|
def noise_like(shape, device, repeat=False): |
|
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) |
|
noise = lambda: torch.randn(shape, device=device) |
|
return repeat_noise() if repeat else noise() |
|
|