|
from ..diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation |
|
from ..diffusionmodules.openaimodel import Timestep |
|
import torch |
|
|
|
class CLIPEmbeddingNoiseAugmentation(ImageConcatWithNoiseAugmentation): |
|
def __init__(self, *args, clip_stats_path=None, timestep_dim=256, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
if clip_stats_path is None: |
|
clip_mean, clip_std = torch.zeros(timestep_dim), torch.ones(timestep_dim) |
|
else: |
|
clip_mean, clip_std = torch.load(clip_stats_path, map_location="cpu") |
|
self.register_buffer("data_mean", clip_mean[None, :], persistent=False) |
|
self.register_buffer("data_std", clip_std[None, :], persistent=False) |
|
self.time_embed = Timestep(timestep_dim) |
|
|
|
def scale(self, x): |
|
|
|
x = (x - self.data_mean.to(x.device)) * 1. / self.data_std.to(x.device) |
|
return x |
|
|
|
def unscale(self, x): |
|
|
|
x = (x * self.data_std.to(x.device)) + self.data_mean.to(x.device) |
|
return x |
|
|
|
def forward(self, x, noise_level=None, seed=None): |
|
if noise_level is None: |
|
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long() |
|
else: |
|
assert isinstance(noise_level, torch.Tensor) |
|
x = self.scale(x) |
|
z = self.q_sample(x, noise_level, seed=seed) |
|
z = self.unscale(z) |
|
noise_level = self.time_embed(noise_level) |
|
return z, noise_level |
|
|