|
import comfy.supported_models |
|
import comfy.supported_models_base |
|
import comfy.utils |
|
import math |
|
import logging |
|
import torch |
|
|
|
def count_blocks(state_dict_keys, prefix_string): |
|
count = 0 |
|
while True: |
|
c = False |
|
for k in state_dict_keys: |
|
if k.startswith(prefix_string.format(count)): |
|
c = True |
|
break |
|
if c == False: |
|
break |
|
count += 1 |
|
return count |
|
|
|
def calculate_transformer_depth(prefix, state_dict_keys, state_dict): |
|
context_dim = None |
|
use_linear_in_transformer = False |
|
|
|
transformer_prefix = prefix + "1.transformer_blocks." |
|
transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys))) |
|
if len(transformer_keys) > 0: |
|
last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}') |
|
context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1] |
|
use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2 |
|
time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict |
|
time_stack_cross = '{}1.time_stack.0.attn2.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn2.to_q.weight'.format(prefix) in state_dict |
|
return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack, time_stack_cross |
|
return None |
|
|
|
def detect_unet_config(state_dict, key_prefix): |
|
state_dict_keys = list(state_dict.keys()) |
|
|
|
if '{}joint_blocks.0.context_block.attn.qkv.weight'.format(key_prefix) in state_dict_keys: |
|
unet_config = {} |
|
unet_config["in_channels"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[1] |
|
patch_size = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[2] |
|
unet_config["patch_size"] = patch_size |
|
final_layer = '{}final_layer.linear.weight'.format(key_prefix) |
|
if final_layer in state_dict: |
|
unet_config["out_channels"] = state_dict[final_layer].shape[0] // (patch_size * patch_size) |
|
|
|
unet_config["depth"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0] // 64 |
|
unet_config["input_size"] = None |
|
y_key = '{}y_embedder.mlp.0.weight'.format(key_prefix) |
|
if y_key in state_dict_keys: |
|
unet_config["adm_in_channels"] = state_dict[y_key].shape[1] |
|
|
|
context_key = '{}context_embedder.weight'.format(key_prefix) |
|
if context_key in state_dict_keys: |
|
in_features = state_dict[context_key].shape[1] |
|
out_features = state_dict[context_key].shape[0] |
|
unet_config["context_embedder_config"] = {"target": "torch.nn.Linear", "params": {"in_features": in_features, "out_features": out_features}} |
|
num_patches_key = '{}pos_embed'.format(key_prefix) |
|
if num_patches_key in state_dict_keys: |
|
num_patches = state_dict[num_patches_key].shape[1] |
|
unet_config["num_patches"] = num_patches |
|
unet_config["pos_embed_max_size"] = round(math.sqrt(num_patches)) |
|
|
|
rms_qk = '{}joint_blocks.0.context_block.attn.ln_q.weight'.format(key_prefix) |
|
if rms_qk in state_dict_keys: |
|
unet_config["qk_norm"] = "rms" |
|
|
|
unet_config["pos_embed_scaling_factor"] = None |
|
context_processor = '{}context_processor.layers.0.attn.qkv.weight'.format(key_prefix) |
|
if context_processor in state_dict_keys: |
|
unet_config["context_processor_layers"] = count_blocks(state_dict_keys, '{}context_processor.layers.'.format(key_prefix) + '{}.') |
|
unet_config["x_block_self_attn_layers"] = [] |
|
for key in state_dict_keys: |
|
if key.startswith('{}joint_blocks.'.format(key_prefix)) and key.endswith('.x_block.attn2.qkv.weight'): |
|
layer = key[len('{}joint_blocks.'.format(key_prefix)):-len('.x_block.attn2.qkv.weight')] |
|
unet_config["x_block_self_attn_layers"].append(int(layer)) |
|
return unet_config |
|
|
|
if '{}clf.1.weight'.format(key_prefix) in state_dict_keys: |
|
unet_config = {} |
|
text_mapper_name = '{}clip_txt_mapper.weight'.format(key_prefix) |
|
if text_mapper_name in state_dict_keys: |
|
unet_config['stable_cascade_stage'] = 'c' |
|
w = state_dict[text_mapper_name] |
|
if w.shape[0] == 1536: |
|
unet_config['c_cond'] = 1536 |
|
unet_config['c_hidden'] = [1536, 1536] |
|
unet_config['nhead'] = [24, 24] |
|
unet_config['blocks'] = [[4, 12], [12, 4]] |
|
elif w.shape[0] == 2048: |
|
unet_config['c_cond'] = 2048 |
|
elif '{}clip_mapper.weight'.format(key_prefix) in state_dict_keys: |
|
unet_config['stable_cascade_stage'] = 'b' |
|
w = state_dict['{}down_blocks.1.0.channelwise.0.weight'.format(key_prefix)] |
|
if w.shape[-1] == 640: |
|
unet_config['c_hidden'] = [320, 640, 1280, 1280] |
|
unet_config['nhead'] = [-1, -1, 20, 20] |
|
unet_config['blocks'] = [[2, 6, 28, 6], [6, 28, 6, 2]] |
|
unet_config['block_repeat'] = [[1, 1, 1, 1], [3, 3, 2, 2]] |
|
elif w.shape[-1] == 576: |
|
unet_config['c_hidden'] = [320, 576, 1152, 1152] |
|
unet_config['nhead'] = [-1, 9, 18, 18] |
|
unet_config['blocks'] = [[2, 4, 14, 4], [4, 14, 4, 2]] |
|
unet_config['block_repeat'] = [[1, 1, 1, 1], [2, 2, 2, 2]] |
|
return unet_config |
|
|
|
if '{}transformer.rotary_pos_emb.inv_freq'.format(key_prefix) in state_dict_keys: |
|
unet_config = {} |
|
unet_config["audio_model"] = "dit1.0" |
|
return unet_config |
|
|
|
if '{}double_layers.0.attn.w1q.weight'.format(key_prefix) in state_dict_keys: |
|
unet_config = {} |
|
unet_config["max_seq"] = state_dict['{}positional_encoding'.format(key_prefix)].shape[1] |
|
unet_config["cond_seq_dim"] = state_dict['{}cond_seq_linear.weight'.format(key_prefix)].shape[1] |
|
double_layers = count_blocks(state_dict_keys, '{}double_layers.'.format(key_prefix) + '{}.') |
|
single_layers = count_blocks(state_dict_keys, '{}single_layers.'.format(key_prefix) + '{}.') |
|
unet_config["n_double_layers"] = double_layers |
|
unet_config["n_layers"] = double_layers + single_layers |
|
return unet_config |
|
|
|
if '{}mlp_t5.0.weight'.format(key_prefix) in state_dict_keys: |
|
unet_config = {} |
|
unet_config["image_model"] = "hydit" |
|
unet_config["depth"] = count_blocks(state_dict_keys, '{}blocks.'.format(key_prefix) + '{}.') |
|
unet_config["hidden_size"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0] |
|
if unet_config["hidden_size"] == 1408 and unet_config["depth"] == 40: |
|
unet_config["mlp_ratio"] = 4.3637 |
|
if state_dict['{}extra_embedder.0.weight'.format(key_prefix)].shape[1] == 3968: |
|
unet_config["size_cond"] = True |
|
unet_config["use_style_cond"] = True |
|
unet_config["image_model"] = "hydit1" |
|
return unet_config |
|
|
|
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys: |
|
dit_config = {} |
|
dit_config["image_model"] = "flux" |
|
dit_config["in_channels"] = 16 |
|
patch_size = 2 |
|
dit_config["patch_size"] = patch_size |
|
in_key = "{}img_in.weight".format(key_prefix) |
|
if in_key in state_dict_keys: |
|
dit_config["in_channels"] = state_dict[in_key].shape[1] // (patch_size * patch_size) |
|
dit_config["out_channels"] = 16 |
|
dit_config["vec_in_dim"] = 768 |
|
dit_config["context_in_dim"] = 4096 |
|
dit_config["hidden_size"] = 3072 |
|
dit_config["mlp_ratio"] = 4.0 |
|
dit_config["num_heads"] = 24 |
|
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.') |
|
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.') |
|
dit_config["axes_dim"] = [16, 56, 56] |
|
dit_config["theta"] = 10000 |
|
dit_config["qkv_bias"] = True |
|
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys |
|
return dit_config |
|
|
|
if '{}t5_yproj.weight'.format(key_prefix) in state_dict_keys: |
|
dit_config = {} |
|
dit_config["image_model"] = "mochi_preview" |
|
dit_config["depth"] = 48 |
|
dit_config["patch_size"] = 2 |
|
dit_config["num_heads"] = 24 |
|
dit_config["hidden_size_x"] = 3072 |
|
dit_config["hidden_size_y"] = 1536 |
|
dit_config["mlp_ratio_x"] = 4.0 |
|
dit_config["mlp_ratio_y"] = 4.0 |
|
dit_config["learn_sigma"] = False |
|
dit_config["in_channels"] = 12 |
|
dit_config["qk_norm"] = True |
|
dit_config["qkv_bias"] = False |
|
dit_config["out_bias"] = True |
|
dit_config["attn_drop"] = 0.0 |
|
dit_config["patch_embed_bias"] = True |
|
dit_config["posenc_preserve_area"] = True |
|
dit_config["timestep_mlp_bias"] = True |
|
dit_config["attend_to_padding"] = False |
|
dit_config["timestep_scale"] = 1000.0 |
|
dit_config["use_t5"] = True |
|
dit_config["t5_feat_dim"] = 4096 |
|
dit_config["t5_token_length"] = 256 |
|
dit_config["rope_theta"] = 10000.0 |
|
return dit_config |
|
|
|
if '{}adaln_single.emb.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: |
|
dit_config = {} |
|
dit_config["image_model"] = "ltxv" |
|
return dit_config |
|
|
|
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys: |
|
return None |
|
|
|
unet_config = { |
|
"use_checkpoint": False, |
|
"image_size": 32, |
|
"use_spatial_transformer": True, |
|
"legacy": False |
|
} |
|
|
|
y_input = '{}label_emb.0.0.weight'.format(key_prefix) |
|
if y_input in state_dict_keys: |
|
unet_config["num_classes"] = "sequential" |
|
unet_config["adm_in_channels"] = state_dict[y_input].shape[1] |
|
else: |
|
unet_config["adm_in_channels"] = None |
|
|
|
model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0] |
|
in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1] |
|
|
|
out_key = '{}out.2.weight'.format(key_prefix) |
|
if out_key in state_dict: |
|
out_channels = state_dict[out_key].shape[0] |
|
else: |
|
out_channels = 4 |
|
|
|
num_res_blocks = [] |
|
channel_mult = [] |
|
attention_resolutions = [] |
|
transformer_depth = [] |
|
transformer_depth_output = [] |
|
context_dim = None |
|
use_linear_in_transformer = False |
|
|
|
video_model = False |
|
video_model_cross = False |
|
|
|
current_res = 1 |
|
count = 0 |
|
|
|
last_res_blocks = 0 |
|
last_channel_mult = 0 |
|
|
|
input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.') |
|
for count in range(input_block_count): |
|
prefix = '{}input_blocks.{}.'.format(key_prefix, count) |
|
prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1) |
|
|
|
block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys))) |
|
if len(block_keys) == 0: |
|
break |
|
|
|
block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys))) |
|
|
|
if "{}0.op.weight".format(prefix) in block_keys: |
|
num_res_blocks.append(last_res_blocks) |
|
channel_mult.append(last_channel_mult) |
|
|
|
current_res *= 2 |
|
last_res_blocks = 0 |
|
last_channel_mult = 0 |
|
out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict) |
|
if out is not None: |
|
transformer_depth_output.append(out[0]) |
|
else: |
|
transformer_depth_output.append(0) |
|
else: |
|
res_block_prefix = "{}0.in_layers.0.weight".format(prefix) |
|
if res_block_prefix in block_keys: |
|
last_res_blocks += 1 |
|
last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels |
|
|
|
out = calculate_transformer_depth(prefix, state_dict_keys, state_dict) |
|
if out is not None: |
|
transformer_depth.append(out[0]) |
|
if context_dim is None: |
|
context_dim = out[1] |
|
use_linear_in_transformer = out[2] |
|
video_model = out[3] |
|
video_model_cross = out[4] |
|
else: |
|
transformer_depth.append(0) |
|
|
|
res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output) |
|
if res_block_prefix in block_keys_output: |
|
out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict) |
|
if out is not None: |
|
transformer_depth_output.append(out[0]) |
|
else: |
|
transformer_depth_output.append(0) |
|
|
|
|
|
num_res_blocks.append(last_res_blocks) |
|
channel_mult.append(last_channel_mult) |
|
if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys: |
|
transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}') |
|
elif "{}middle_block.0.in_layers.0.weight".format(key_prefix) in state_dict_keys: |
|
transformer_depth_middle = -1 |
|
else: |
|
transformer_depth_middle = -2 |
|
|
|
unet_config["in_channels"] = in_channels |
|
unet_config["out_channels"] = out_channels |
|
unet_config["model_channels"] = model_channels |
|
unet_config["num_res_blocks"] = num_res_blocks |
|
unet_config["transformer_depth"] = transformer_depth |
|
unet_config["transformer_depth_output"] = transformer_depth_output |
|
unet_config["channel_mult"] = channel_mult |
|
unet_config["transformer_depth_middle"] = transformer_depth_middle |
|
unet_config['use_linear_in_transformer'] = use_linear_in_transformer |
|
unet_config["context_dim"] = context_dim |
|
|
|
if video_model: |
|
unet_config["extra_ff_mix_layer"] = True |
|
unet_config["use_spatial_context"] = True |
|
unet_config["merge_strategy"] = "learned_with_images" |
|
unet_config["merge_factor"] = 0.0 |
|
unet_config["video_kernel_size"] = [3, 1, 1] |
|
unet_config["use_temporal_resblock"] = True |
|
unet_config["use_temporal_attention"] = True |
|
unet_config["disable_temporal_crossattention"] = not video_model_cross |
|
else: |
|
unet_config["use_temporal_resblock"] = False |
|
unet_config["use_temporal_attention"] = False |
|
|
|
return unet_config |
|
|
|
def model_config_from_unet_config(unet_config, state_dict=None): |
|
for model_config in comfy.supported_models.models: |
|
if model_config.matches(unet_config, state_dict): |
|
return model_config(unet_config) |
|
|
|
logging.error("no match {}".format(unet_config)) |
|
return None |
|
|
|
def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=False): |
|
unet_config = detect_unet_config(state_dict, unet_key_prefix) |
|
if unet_config is None: |
|
return None |
|
model_config = model_config_from_unet_config(unet_config, state_dict) |
|
if model_config is None and use_base_if_no_match: |
|
model_config = comfy.supported_models_base.BASE(unet_config) |
|
|
|
scaled_fp8_key = "{}scaled_fp8".format(unet_key_prefix) |
|
if scaled_fp8_key in state_dict: |
|
scaled_fp8_weight = state_dict.pop(scaled_fp8_key) |
|
model_config.scaled_fp8 = scaled_fp8_weight.dtype |
|
if model_config.scaled_fp8 == torch.float32: |
|
model_config.scaled_fp8 = torch.float8_e4m3fn |
|
|
|
return model_config |
|
|
|
def unet_prefix_from_state_dict(state_dict): |
|
candidates = ["model.diffusion_model.", |
|
"model.model.", |
|
] |
|
counts = {k: 0 for k in candidates} |
|
for k in state_dict: |
|
for c in candidates: |
|
if k.startswith(c): |
|
counts[c] += 1 |
|
break |
|
|
|
top = max(counts, key=counts.get) |
|
if counts[top] > 5: |
|
return top |
|
else: |
|
return "model." |
|
|
|
|
|
def convert_config(unet_config): |
|
new_config = unet_config.copy() |
|
num_res_blocks = new_config.get("num_res_blocks", None) |
|
channel_mult = new_config.get("channel_mult", None) |
|
|
|
if isinstance(num_res_blocks, int): |
|
num_res_blocks = len(channel_mult) * [num_res_blocks] |
|
|
|
if "attention_resolutions" in new_config: |
|
attention_resolutions = new_config.pop("attention_resolutions") |
|
transformer_depth = new_config.get("transformer_depth", None) |
|
transformer_depth_middle = new_config.get("transformer_depth_middle", None) |
|
|
|
if isinstance(transformer_depth, int): |
|
transformer_depth = len(channel_mult) * [transformer_depth] |
|
if transformer_depth_middle is None: |
|
transformer_depth_middle = transformer_depth[-1] |
|
t_in = [] |
|
t_out = [] |
|
s = 1 |
|
for i in range(len(num_res_blocks)): |
|
res = num_res_blocks[i] |
|
d = 0 |
|
if s in attention_resolutions: |
|
d = transformer_depth[i] |
|
|
|
t_in += [d] * res |
|
t_out += [d] * (res + 1) |
|
s *= 2 |
|
transformer_depth = t_in |
|
transformer_depth_output = t_out |
|
new_config["transformer_depth"] = t_in |
|
new_config["transformer_depth_output"] = t_out |
|
new_config["transformer_depth_middle"] = transformer_depth_middle |
|
|
|
new_config["num_res_blocks"] = num_res_blocks |
|
return new_config |
|
|
|
|
|
def unet_config_from_diffusers_unet(state_dict, dtype=None): |
|
match = {} |
|
transformer_depth = [] |
|
|
|
attn_res = 1 |
|
down_blocks = count_blocks(state_dict, "down_blocks.{}") |
|
for i in range(down_blocks): |
|
attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}') |
|
res_blocks = count_blocks(state_dict, "down_blocks.{}.resnets.".format(i) + '{}') |
|
for ab in range(attn_blocks): |
|
transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}') |
|
transformer_depth.append(transformer_count) |
|
if transformer_count > 0: |
|
match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1] |
|
|
|
attn_res *= 2 |
|
if attn_blocks == 0: |
|
for i in range(res_blocks): |
|
transformer_depth.append(0) |
|
|
|
match["transformer_depth"] = transformer_depth |
|
|
|
match["model_channels"] = state_dict["conv_in.weight"].shape[0] |
|
match["in_channels"] = state_dict["conv_in.weight"].shape[1] |
|
match["adm_in_channels"] = None |
|
if "class_embedding.linear_1.weight" in state_dict: |
|
match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1] |
|
elif "add_embedding.linear_1.weight" in state_dict: |
|
match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1] |
|
|
|
SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, |
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, |
|
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, |
|
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], |
|
'use_temporal_attention': False, 'use_temporal_resblock': False} |
|
|
|
SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, |
|
'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384, |
|
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4, |
|
'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0], |
|
'use_temporal_attention': False, 'use_temporal_resblock': False} |
|
|
|
SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, |
|
'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], |
|
'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, |
|
'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], |
|
'use_temporal_attention': False, 'use_temporal_resblock': False} |
|
|
|
SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, |
|
'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, |
|
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, |
|
'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], |
|
'use_temporal_attention': False, 'use_temporal_resblock': False} |
|
|
|
SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, |
|
'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, |
|
'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, |
|
'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], |
|
'use_temporal_attention': False, 'use_temporal_resblock': False} |
|
|
|
SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None, |
|
'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], |
|
'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8, |
|
'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], |
|
'use_temporal_attention': False, 'use_temporal_resblock': False} |
|
|
|
SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, |
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, |
|
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1, |
|
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1], |
|
'use_temporal_attention': False, 'use_temporal_resblock': False} |
|
|
|
SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, |
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, |
|
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0, |
|
'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0], |
|
'use_temporal_attention': False, 'use_temporal_resblock': False} |
|
|
|
SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, |
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320, |
|
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, |
|
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], |
|
'use_temporal_attention': False, 'use_temporal_resblock': False} |
|
|
|
SDXL_diffusers_ip2p = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, |
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 8, 'model_channels': 320, |
|
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, |
|
'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], |
|
'use_temporal_attention': False, 'use_temporal_resblock': False} |
|
|
|
SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, |
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, |
|
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4], |
|
'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, |
|
'use_temporal_attention': False, 'use_temporal_resblock': False} |
|
|
|
Segmind_Vega = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, |
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, |
|
'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 1, 1, 2, 2], 'transformer_depth_output': [0, 0, 0, 1, 1, 1, 2, 2, 2], |
|
'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, |
|
'use_temporal_attention': False, 'use_temporal_resblock': False} |
|
|
|
KOALA_700M = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, |
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, |
|
'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 5], 'transformer_depth_output': [0, 0, 2, 2, 5, 5], |
|
'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, |
|
'use_temporal_attention': False, 'use_temporal_resblock': False} |
|
|
|
KOALA_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, |
|
'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, |
|
'num_res_blocks': [1, 1, 1], 'transformer_depth': [0, 2, 6], 'transformer_depth_output': [0, 0, 2, 2, 6, 6], |
|
'channel_mult': [1, 2, 4], 'transformer_depth_middle': 6, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, |
|
'use_temporal_attention': False, 'use_temporal_resblock': False} |
|
|
|
SD09_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, |
|
'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1], |
|
'transformer_depth': [1, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': True, |
|
'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1], |
|
'use_temporal_attention': False, 'use_temporal_resblock': False, 'disable_self_attentions': [True, False, False]} |
|
|
|
SD_XS = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, |
|
'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [1, 1, 1], |
|
'transformer_depth': [0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -2, 'use_linear_in_transformer': False, |
|
'context_dim': 768, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 1, 1, 1, 1], |
|
'use_temporal_attention': False, 'use_temporal_resblock': False} |
|
|
|
SD15_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None, |
|
'dtype': dtype, 'in_channels': 9, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], |
|
'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8, |
|
'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], |
|
'use_temporal_attention': False, 'use_temporal_resblock': False} |
|
|
|
|
|
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p, SD15_diffusers_inpaint] |
|
|
|
for unet_config in supported_models: |
|
matches = True |
|
for k in match: |
|
if match[k] != unet_config[k]: |
|
matches = False |
|
break |
|
if matches: |
|
return convert_config(unet_config) |
|
return None |
|
|
|
def model_config_from_diffusers_unet(state_dict): |
|
unet_config = unet_config_from_diffusers_unet(state_dict) |
|
if unet_config is not None: |
|
return model_config_from_unet_config(unet_config) |
|
return None |
|
|
|
def convert_diffusers_mmdit(state_dict, output_prefix=""): |
|
out_sd = {} |
|
|
|
if 'joint_transformer_blocks.0.attn.add_k_proj.weight' in state_dict: |
|
num_joint = count_blocks(state_dict, 'joint_transformer_blocks.{}.') |
|
num_single = count_blocks(state_dict, 'single_transformer_blocks.{}.') |
|
sd_map = comfy.utils.auraflow_to_diffusers({"n_double_layers": num_joint, "n_layers": num_joint + num_single}, output_prefix=output_prefix) |
|
elif 'x_embedder.weight' in state_dict: |
|
depth = count_blocks(state_dict, 'transformer_blocks.{}.') |
|
depth_single_blocks = count_blocks(state_dict, 'single_transformer_blocks.{}.') |
|
hidden_size = state_dict["x_embedder.bias"].shape[0] |
|
sd_map = comfy.utils.flux_to_diffusers({"depth": depth, "depth_single_blocks": depth_single_blocks, "hidden_size": hidden_size}, output_prefix=output_prefix) |
|
elif 'transformer_blocks.0.attn.add_q_proj.weight' in state_dict: |
|
num_blocks = count_blocks(state_dict, 'transformer_blocks.{}.') |
|
depth = state_dict["pos_embed.proj.weight"].shape[0] // 64 |
|
sd_map = comfy.utils.mmdit_to_diffusers({"depth": depth, "num_blocks": num_blocks}, output_prefix=output_prefix) |
|
else: |
|
return None |
|
|
|
for k in sd_map: |
|
weight = state_dict.get(k, None) |
|
if weight is not None: |
|
t = sd_map[k] |
|
|
|
if not isinstance(t, str): |
|
if len(t) > 2: |
|
fun = t[2] |
|
else: |
|
fun = lambda a: a |
|
offset = t[1] |
|
if offset is not None: |
|
old_weight = out_sd.get(t[0], None) |
|
if old_weight is None: |
|
old_weight = torch.empty_like(weight) |
|
if old_weight.shape[offset[0]] < offset[1] + offset[2]: |
|
exp = list(weight.shape) |
|
exp[offset[0]] = offset[1] + offset[2] |
|
new = torch.empty(exp, device=weight.device, dtype=weight.dtype) |
|
new[:old_weight.shape[0]] = old_weight |
|
old_weight = new |
|
|
|
w = old_weight.narrow(offset[0], offset[1], offset[2]) |
|
else: |
|
old_weight = weight |
|
w = weight |
|
w[:] = fun(weight) |
|
t = t[0] |
|
out_sd[t] = old_weight |
|
else: |
|
out_sd[t] = weight |
|
state_dict.pop(k) |
|
|
|
return out_sd |
|
|