|
""" |
|
This file is part of ComfyUI. |
|
Copyright (C) 2024 Comfy |
|
|
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <https://www.gnu.org/licenses/>. |
|
""" |
|
|
|
import psutil |
|
import logging |
|
from enum import Enum |
|
from comfy.cli_args import args |
|
import torch |
|
import sys |
|
import platform |
|
|
|
class VRAMState(Enum): |
|
DISABLED = 0 |
|
NO_VRAM = 1 |
|
LOW_VRAM = 2 |
|
NORMAL_VRAM = 3 |
|
HIGH_VRAM = 4 |
|
SHARED = 5 |
|
|
|
class CPUState(Enum): |
|
GPU = 0 |
|
CPU = 1 |
|
MPS = 2 |
|
|
|
|
|
vram_state = VRAMState.NORMAL_VRAM |
|
set_vram_to = VRAMState.NORMAL_VRAM |
|
cpu_state = CPUState.GPU |
|
|
|
total_vram = 0 |
|
|
|
xpu_available = False |
|
torch_version = "" |
|
try: |
|
torch_version = torch.version.__version__ |
|
xpu_available = (int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) <= 4)) and torch.xpu.is_available() |
|
except: |
|
pass |
|
|
|
lowvram_available = True |
|
if args.deterministic: |
|
logging.info("Using deterministic algorithms for pytorch") |
|
torch.use_deterministic_algorithms(True, warn_only=True) |
|
|
|
directml_enabled = False |
|
if args.directml is not None: |
|
import torch_directml |
|
directml_enabled = True |
|
device_index = args.directml |
|
if device_index < 0: |
|
directml_device = torch_directml.device() |
|
else: |
|
directml_device = torch_directml.device(device_index) |
|
logging.info("Using directml with device: {}".format(torch_directml.device_name(device_index))) |
|
|
|
lowvram_available = False |
|
|
|
try: |
|
import intel_extension_for_pytorch as ipex |
|
_ = torch.xpu.device_count() |
|
xpu_available = torch.xpu.is_available() |
|
except: |
|
xpu_available = xpu_available or (hasattr(torch, "xpu") and torch.xpu.is_available()) |
|
|
|
try: |
|
if torch.backends.mps.is_available(): |
|
cpu_state = CPUState.MPS |
|
import torch.mps |
|
except: |
|
pass |
|
|
|
if args.cpu: |
|
cpu_state = CPUState.CPU |
|
|
|
def is_intel_xpu(): |
|
global cpu_state |
|
global xpu_available |
|
if cpu_state == CPUState.GPU: |
|
if xpu_available: |
|
return True |
|
return False |
|
|
|
def get_torch_device(): |
|
global directml_enabled |
|
global cpu_state |
|
if directml_enabled: |
|
global directml_device |
|
return directml_device |
|
if cpu_state == CPUState.MPS: |
|
return torch.device("mps") |
|
if cpu_state == CPUState.CPU: |
|
return torch.device("cpu") |
|
else: |
|
if is_intel_xpu(): |
|
return torch.device("xpu", torch.xpu.current_device()) |
|
else: |
|
return torch.device(torch.cuda.current_device()) |
|
|
|
def get_total_memory(dev=None, torch_total_too=False): |
|
global directml_enabled |
|
if dev is None: |
|
dev = get_torch_device() |
|
|
|
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): |
|
mem_total = psutil.virtual_memory().total |
|
mem_total_torch = mem_total |
|
else: |
|
if directml_enabled: |
|
mem_total = 1024 * 1024 * 1024 |
|
mem_total_torch = mem_total |
|
elif is_intel_xpu(): |
|
stats = torch.xpu.memory_stats(dev) |
|
mem_reserved = stats['reserved_bytes.all.current'] |
|
mem_total_torch = mem_reserved |
|
mem_total = torch.xpu.get_device_properties(dev).total_memory |
|
else: |
|
stats = torch.cuda.memory_stats(dev) |
|
mem_reserved = stats['reserved_bytes.all.current'] |
|
_, mem_total_cuda = torch.cuda.mem_get_info(dev) |
|
mem_total_torch = mem_reserved |
|
mem_total = mem_total_cuda |
|
|
|
if torch_total_too: |
|
return (mem_total, mem_total_torch) |
|
else: |
|
return mem_total |
|
|
|
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024) |
|
total_ram = psutil.virtual_memory().total / (1024 * 1024) |
|
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)) |
|
|
|
try: |
|
logging.info("pytorch version: {}".format(torch_version)) |
|
except: |
|
pass |
|
|
|
try: |
|
OOM_EXCEPTION = torch.cuda.OutOfMemoryError |
|
except: |
|
OOM_EXCEPTION = Exception |
|
|
|
XFORMERS_VERSION = "" |
|
XFORMERS_ENABLED_VAE = True |
|
if args.disable_xformers: |
|
XFORMERS_IS_AVAILABLE = False |
|
else: |
|
try: |
|
import xformers |
|
import xformers.ops |
|
XFORMERS_IS_AVAILABLE = True |
|
try: |
|
XFORMERS_IS_AVAILABLE = xformers._has_cpp_library |
|
except: |
|
pass |
|
try: |
|
XFORMERS_VERSION = xformers.version.__version__ |
|
logging.info("xformers version: {}".format(XFORMERS_VERSION)) |
|
if XFORMERS_VERSION.startswith("0.0.18"): |
|
logging.warning("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.") |
|
logging.warning("Please downgrade or upgrade xformers to a different version.\n") |
|
XFORMERS_ENABLED_VAE = False |
|
except: |
|
pass |
|
except: |
|
XFORMERS_IS_AVAILABLE = False |
|
|
|
def is_nvidia(): |
|
global cpu_state |
|
if cpu_state == CPUState.GPU: |
|
if torch.version.cuda: |
|
return True |
|
return False |
|
|
|
ENABLE_PYTORCH_ATTENTION = False |
|
if args.use_pytorch_cross_attention: |
|
ENABLE_PYTORCH_ATTENTION = True |
|
XFORMERS_IS_AVAILABLE = False |
|
|
|
VAE_DTYPES = [torch.float32] |
|
|
|
try: |
|
if is_nvidia(): |
|
if int(torch_version[0]) >= 2: |
|
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False: |
|
ENABLE_PYTORCH_ATTENTION = True |
|
if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8: |
|
VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES |
|
if is_intel_xpu(): |
|
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False: |
|
ENABLE_PYTORCH_ATTENTION = True |
|
except: |
|
pass |
|
|
|
if is_intel_xpu(): |
|
VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES |
|
|
|
if args.cpu_vae: |
|
VAE_DTYPES = [torch.float32] |
|
|
|
|
|
if ENABLE_PYTORCH_ATTENTION: |
|
torch.backends.cuda.enable_math_sdp(True) |
|
torch.backends.cuda.enable_flash_sdp(True) |
|
torch.backends.cuda.enable_mem_efficient_sdp(True) |
|
|
|
if args.lowvram: |
|
set_vram_to = VRAMState.LOW_VRAM |
|
lowvram_available = True |
|
elif args.novram: |
|
set_vram_to = VRAMState.NO_VRAM |
|
elif args.highvram or args.gpu_only: |
|
vram_state = VRAMState.HIGH_VRAM |
|
|
|
FORCE_FP32 = False |
|
FORCE_FP16 = False |
|
if args.force_fp32: |
|
logging.info("Forcing FP32, if this improves things please report it.") |
|
FORCE_FP32 = True |
|
|
|
if args.force_fp16: |
|
logging.info("Forcing FP16.") |
|
FORCE_FP16 = True |
|
|
|
if lowvram_available: |
|
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM): |
|
vram_state = set_vram_to |
|
|
|
|
|
if cpu_state != CPUState.GPU: |
|
vram_state = VRAMState.DISABLED |
|
|
|
if cpu_state == CPUState.MPS: |
|
vram_state = VRAMState.SHARED |
|
|
|
logging.info(f"Set vram state to: {vram_state.name}") |
|
|
|
DISABLE_SMART_MEMORY = args.disable_smart_memory |
|
|
|
if DISABLE_SMART_MEMORY: |
|
logging.info("Disabling smart memory management") |
|
|
|
def get_torch_device_name(device): |
|
if hasattr(device, 'type'): |
|
if device.type == "cuda": |
|
try: |
|
allocator_backend = torch.cuda.get_allocator_backend() |
|
except: |
|
allocator_backend = "" |
|
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend) |
|
else: |
|
return "{}".format(device.type) |
|
elif is_intel_xpu(): |
|
return "{} {}".format(device, torch.xpu.get_device_name(device)) |
|
else: |
|
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device)) |
|
|
|
try: |
|
logging.info("Device: {}".format(get_torch_device_name(get_torch_device()))) |
|
except: |
|
logging.warning("Could not pick default device.") |
|
|
|
|
|
current_loaded_models = [] |
|
|
|
def module_size(module): |
|
module_mem = 0 |
|
sd = module.state_dict() |
|
for k in sd: |
|
t = sd[k] |
|
module_mem += t.nelement() * t.element_size() |
|
return module_mem |
|
|
|
class LoadedModel: |
|
def __init__(self, model): |
|
self.model = model |
|
self.device = model.load_device |
|
self.weights_loaded = False |
|
self.real_model = None |
|
self.currently_used = True |
|
|
|
def model_memory(self): |
|
return self.model.model_size() |
|
|
|
def model_offloaded_memory(self): |
|
return self.model.model_size() - self.model.loaded_size() |
|
|
|
def model_memory_required(self, device): |
|
if device == self.model.current_loaded_device(): |
|
return self.model_offloaded_memory() |
|
else: |
|
return self.model_memory() |
|
|
|
def model_load(self, lowvram_model_memory=0, force_patch_weights=False): |
|
patch_model_to = self.device |
|
|
|
self.model.model_patches_to(self.device) |
|
self.model.model_patches_to(self.model.model_dtype()) |
|
|
|
load_weights = not self.weights_loaded |
|
|
|
if self.model.loaded_size() > 0: |
|
use_more_vram = lowvram_model_memory |
|
if use_more_vram == 0: |
|
use_more_vram = 1e32 |
|
self.model_use_more_vram(use_more_vram) |
|
else: |
|
try: |
|
self.real_model = self.model.patch_model(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory, load_weights=load_weights, force_patch_weights=force_patch_weights) |
|
except Exception as e: |
|
self.model.unpatch_model(self.model.offload_device) |
|
self.model_unload() |
|
raise e |
|
|
|
if is_intel_xpu() and not args.disable_ipex_optimize and 'ipex' in globals() and self.real_model is not None: |
|
with torch.no_grad(): |
|
self.real_model = ipex.optimize(self.real_model.eval(), inplace=True, graph_mode=True, concat_linear=True) |
|
|
|
self.weights_loaded = True |
|
return self.real_model |
|
|
|
def should_reload_model(self, force_patch_weights=False): |
|
if force_patch_weights and self.model.lowvram_patch_counter() > 0: |
|
return True |
|
return False |
|
|
|
def model_unload(self, memory_to_free=None, unpatch_weights=True): |
|
if memory_to_free is not None: |
|
if memory_to_free < self.model.loaded_size(): |
|
freed = self.model.partially_unload(self.model.offload_device, memory_to_free) |
|
if freed >= memory_to_free: |
|
return False |
|
self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights) |
|
self.model.model_patches_to(self.model.offload_device) |
|
self.weights_loaded = self.weights_loaded and not unpatch_weights |
|
self.real_model = None |
|
return True |
|
|
|
def model_use_more_vram(self, extra_memory): |
|
return self.model.partially_load(self.device, extra_memory) |
|
|
|
def __eq__(self, other): |
|
return self.model is other.model |
|
|
|
def use_more_memory(extra_memory, loaded_models, device): |
|
for m in loaded_models: |
|
if m.device == device: |
|
extra_memory -= m.model_use_more_vram(extra_memory) |
|
if extra_memory <= 0: |
|
break |
|
|
|
def offloaded_memory(loaded_models, device): |
|
offloaded_mem = 0 |
|
for m in loaded_models: |
|
if m.device == device: |
|
offloaded_mem += m.model_offloaded_memory() |
|
return offloaded_mem |
|
|
|
WINDOWS = any(platform.win32_ver()) |
|
|
|
EXTRA_RESERVED_VRAM = 400 * 1024 * 1024 |
|
if WINDOWS: |
|
EXTRA_RESERVED_VRAM = 600 * 1024 * 1024 |
|
|
|
if args.reserve_vram is not None: |
|
EXTRA_RESERVED_VRAM = args.reserve_vram * 1024 * 1024 * 1024 |
|
logging.debug("Reserving {}MB vram for other applications.".format(EXTRA_RESERVED_VRAM / (1024 * 1024))) |
|
|
|
def extra_reserved_memory(): |
|
return EXTRA_RESERVED_VRAM |
|
|
|
def minimum_inference_memory(): |
|
return (1024 * 1024 * 1024) * 0.8 + extra_reserved_memory() |
|
|
|
def unload_model_clones(model, unload_weights_only=True, force_unload=True): |
|
to_unload = [] |
|
for i in range(len(current_loaded_models)): |
|
if model.is_clone(current_loaded_models[i].model): |
|
to_unload = [i] + to_unload |
|
|
|
if len(to_unload) == 0: |
|
return True |
|
|
|
same_weights = 0 |
|
for i in to_unload: |
|
if model.clone_has_same_weights(current_loaded_models[i].model): |
|
same_weights += 1 |
|
|
|
if same_weights == len(to_unload): |
|
unload_weight = False |
|
else: |
|
unload_weight = True |
|
|
|
if not force_unload: |
|
if unload_weights_only and unload_weight == False: |
|
return None |
|
else: |
|
unload_weight = True |
|
|
|
for i in to_unload: |
|
logging.debug("unload clone {} {}".format(i, unload_weight)) |
|
current_loaded_models.pop(i).model_unload(unpatch_weights=unload_weight) |
|
|
|
return unload_weight |
|
|
|
def free_memory(memory_required, device, keep_loaded=[]): |
|
unloaded_model = [] |
|
can_unload = [] |
|
unloaded_models = [] |
|
|
|
for i in range(len(current_loaded_models) -1, -1, -1): |
|
shift_model = current_loaded_models[i] |
|
if shift_model.device == device: |
|
if shift_model not in keep_loaded: |
|
can_unload.append((-shift_model.model_offloaded_memory(), sys.getrefcount(shift_model.model), shift_model.model_memory(), i)) |
|
shift_model.currently_used = False |
|
|
|
for x in sorted(can_unload): |
|
i = x[-1] |
|
memory_to_free = None |
|
if not DISABLE_SMART_MEMORY: |
|
free_mem = get_free_memory(device) |
|
if free_mem > memory_required: |
|
break |
|
memory_to_free = memory_required - free_mem |
|
logging.debug(f"Unloading {current_loaded_models[i].model.model.__class__.__name__}") |
|
if current_loaded_models[i].model_unload(memory_to_free): |
|
unloaded_model.append(i) |
|
|
|
for i in sorted(unloaded_model, reverse=True): |
|
unloaded_models.append(current_loaded_models.pop(i)) |
|
|
|
if len(unloaded_model) > 0: |
|
soft_empty_cache() |
|
else: |
|
if vram_state != VRAMState.HIGH_VRAM: |
|
mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True) |
|
if mem_free_torch > mem_free_total * 0.25: |
|
soft_empty_cache() |
|
return unloaded_models |
|
|
|
def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False): |
|
global vram_state |
|
|
|
inference_memory = minimum_inference_memory() |
|
extra_mem = max(inference_memory, memory_required + extra_reserved_memory()) |
|
if minimum_memory_required is None: |
|
minimum_memory_required = extra_mem |
|
else: |
|
minimum_memory_required = max(inference_memory, minimum_memory_required + extra_reserved_memory()) |
|
|
|
models = set(models) |
|
|
|
models_to_load = [] |
|
models_already_loaded = [] |
|
for x in models: |
|
loaded_model = LoadedModel(x) |
|
loaded = None |
|
|
|
try: |
|
loaded_model_index = current_loaded_models.index(loaded_model) |
|
except: |
|
loaded_model_index = None |
|
|
|
if loaded_model_index is not None: |
|
loaded = current_loaded_models[loaded_model_index] |
|
if loaded.should_reload_model(force_patch_weights=force_patch_weights): |
|
current_loaded_models.pop(loaded_model_index).model_unload(unpatch_weights=True) |
|
loaded = None |
|
else: |
|
loaded.currently_used = True |
|
models_already_loaded.append(loaded) |
|
|
|
if loaded is None: |
|
if hasattr(x, "model"): |
|
logging.info(f"Requested to load {x.model.__class__.__name__}") |
|
models_to_load.append(loaded_model) |
|
|
|
if len(models_to_load) == 0: |
|
devs = set(map(lambda a: a.device, models_already_loaded)) |
|
for d in devs: |
|
if d != torch.device("cpu"): |
|
free_memory(extra_mem + offloaded_memory(models_already_loaded, d), d, models_already_loaded) |
|
free_mem = get_free_memory(d) |
|
if free_mem < minimum_memory_required: |
|
logging.info("Unloading models for lowram load.") |
|
models_to_load = free_memory(minimum_memory_required, d) |
|
logging.info("{} models unloaded.".format(len(models_to_load))) |
|
else: |
|
use_more_memory(free_mem - minimum_memory_required, models_already_loaded, d) |
|
if len(models_to_load) == 0: |
|
return |
|
|
|
logging.info(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}") |
|
|
|
total_memory_required = {} |
|
for loaded_model in models_to_load: |
|
unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) |
|
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device) |
|
|
|
for loaded_model in models_already_loaded: |
|
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device) |
|
|
|
for loaded_model in models_to_load: |
|
weights_unloaded = unload_model_clones(loaded_model.model, unload_weights_only=False, force_unload=False) |
|
if weights_unloaded is not None: |
|
loaded_model.weights_loaded = not weights_unloaded |
|
|
|
for device in total_memory_required: |
|
if device != torch.device("cpu"): |
|
free_memory(total_memory_required[device] * 1.1 + extra_mem, device, models_already_loaded) |
|
|
|
for loaded_model in models_to_load: |
|
model = loaded_model.model |
|
torch_dev = model.load_device |
|
if is_device_cpu(torch_dev): |
|
vram_set_state = VRAMState.DISABLED |
|
else: |
|
vram_set_state = vram_state |
|
lowvram_model_memory = 0 |
|
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM) and not force_full_load: |
|
model_size = loaded_model.model_memory_required(torch_dev) |
|
current_free_mem = get_free_memory(torch_dev) |
|
lowvram_model_memory = max(64 * (1024 * 1024), (current_free_mem - minimum_memory_required), min(current_free_mem * 0.4, current_free_mem - minimum_inference_memory())) |
|
if model_size <= lowvram_model_memory: |
|
lowvram_model_memory = 0 |
|
|
|
if vram_set_state == VRAMState.NO_VRAM: |
|
lowvram_model_memory = 64 * 1024 * 1024 |
|
|
|
cur_loaded_model = loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights) |
|
current_loaded_models.insert(0, loaded_model) |
|
|
|
|
|
devs = set(map(lambda a: a.device, models_already_loaded)) |
|
for d in devs: |
|
if d != torch.device("cpu"): |
|
free_mem = get_free_memory(d) |
|
if free_mem > minimum_memory_required: |
|
use_more_memory(free_mem - minimum_memory_required, models_already_loaded, d) |
|
return |
|
|
|
|
|
def load_model_gpu(model): |
|
return load_models_gpu([model]) |
|
|
|
def loaded_models(only_currently_used=False): |
|
output = [] |
|
for m in current_loaded_models: |
|
if only_currently_used: |
|
if not m.currently_used: |
|
continue |
|
|
|
output.append(m.model) |
|
return output |
|
|
|
def cleanup_models(keep_clone_weights_loaded=False): |
|
to_delete = [] |
|
for i in range(len(current_loaded_models)): |
|
|
|
num_refs = sys.getrefcount(current_loaded_models[i].model) |
|
if num_refs <= 2: |
|
if not keep_clone_weights_loaded: |
|
to_delete = [i] + to_delete |
|
|
|
elif sys.getrefcount(current_loaded_models[i].real_model) <= 3: |
|
to_delete = [i] + to_delete |
|
|
|
for i in to_delete: |
|
x = current_loaded_models.pop(i) |
|
x.model_unload() |
|
del x |
|
|
|
def dtype_size(dtype): |
|
dtype_size = 4 |
|
if dtype == torch.float16 or dtype == torch.bfloat16: |
|
dtype_size = 2 |
|
elif dtype == torch.float32: |
|
dtype_size = 4 |
|
else: |
|
try: |
|
dtype_size = dtype.itemsize |
|
except: |
|
pass |
|
return dtype_size |
|
|
|
def unet_offload_device(): |
|
if vram_state == VRAMState.HIGH_VRAM: |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
|
|
def unet_inital_load_device(parameters, dtype): |
|
torch_dev = get_torch_device() |
|
if vram_state == VRAMState.HIGH_VRAM: |
|
return torch_dev |
|
|
|
cpu_dev = torch.device("cpu") |
|
if DISABLE_SMART_MEMORY: |
|
return cpu_dev |
|
|
|
model_size = dtype_size(dtype) * parameters |
|
|
|
mem_dev = get_free_memory(torch_dev) |
|
mem_cpu = get_free_memory(cpu_dev) |
|
if mem_dev > mem_cpu and model_size < mem_dev: |
|
return torch_dev |
|
else: |
|
return cpu_dev |
|
|
|
def maximum_vram_for_weights(device=None): |
|
return (get_total_memory(device) * 0.88 - minimum_inference_memory()) |
|
|
|
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): |
|
if model_params < 0: |
|
model_params = 1000000000000000000000 |
|
if args.fp32_unet: |
|
return torch.float32 |
|
if args.fp64_unet: |
|
return torch.float64 |
|
if args.bf16_unet: |
|
return torch.bfloat16 |
|
if args.fp16_unet: |
|
return torch.float16 |
|
if args.fp8_e4m3fn_unet: |
|
return torch.float8_e4m3fn |
|
if args.fp8_e5m2_unet: |
|
return torch.float8_e5m2 |
|
|
|
fp8_dtype = None |
|
try: |
|
for dtype in [torch.float8_e4m3fn, torch.float8_e5m2]: |
|
if dtype in supported_dtypes: |
|
fp8_dtype = dtype |
|
break |
|
except: |
|
pass |
|
|
|
if fp8_dtype is not None: |
|
if supports_fp8_compute(device): |
|
return fp8_dtype |
|
|
|
free_model_memory = maximum_vram_for_weights(device) |
|
if model_params * 2 > free_model_memory: |
|
return fp8_dtype |
|
|
|
for dt in supported_dtypes: |
|
if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params): |
|
if torch.float16 in supported_dtypes: |
|
return torch.float16 |
|
if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params): |
|
if torch.bfloat16 in supported_dtypes: |
|
return torch.bfloat16 |
|
|
|
for dt in supported_dtypes: |
|
if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params, manual_cast=True): |
|
if torch.float16 in supported_dtypes: |
|
return torch.float16 |
|
if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params, manual_cast=True): |
|
if torch.bfloat16 in supported_dtypes: |
|
return torch.bfloat16 |
|
|
|
return torch.float32 |
|
|
|
|
|
def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): |
|
if weight_dtype == torch.float32 or weight_dtype == torch.float64: |
|
return None |
|
|
|
fp16_supported = should_use_fp16(inference_device, prioritize_performance=False) |
|
if fp16_supported and weight_dtype == torch.float16: |
|
return None |
|
|
|
bf16_supported = should_use_bf16(inference_device) |
|
if bf16_supported and weight_dtype == torch.bfloat16: |
|
return None |
|
|
|
fp16_supported = should_use_fp16(inference_device, prioritize_performance=True) |
|
for dt in supported_dtypes: |
|
if dt == torch.float16 and fp16_supported: |
|
return torch.float16 |
|
if dt == torch.bfloat16 and bf16_supported: |
|
return torch.bfloat16 |
|
|
|
return torch.float32 |
|
|
|
def text_encoder_offload_device(): |
|
if args.gpu_only: |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
|
|
def text_encoder_device(): |
|
if args.gpu_only: |
|
return get_torch_device() |
|
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM: |
|
if should_use_fp16(prioritize_performance=False): |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
else: |
|
return torch.device("cpu") |
|
|
|
def text_encoder_initial_device(load_device, offload_device, model_size=0): |
|
if load_device == offload_device or model_size <= 1024 * 1024 * 1024: |
|
return offload_device |
|
|
|
if is_device_mps(load_device): |
|
return offload_device |
|
|
|
mem_l = get_free_memory(load_device) |
|
mem_o = get_free_memory(offload_device) |
|
if mem_l > (mem_o * 0.5) and model_size * 1.2 < mem_l: |
|
return load_device |
|
else: |
|
return offload_device |
|
|
|
def text_encoder_dtype(device=None): |
|
if args.fp8_e4m3fn_text_enc: |
|
return torch.float8_e4m3fn |
|
elif args.fp8_e5m2_text_enc: |
|
return torch.float8_e5m2 |
|
elif args.fp16_text_enc: |
|
return torch.float16 |
|
elif args.fp32_text_enc: |
|
return torch.float32 |
|
|
|
if is_device_cpu(device): |
|
return torch.float16 |
|
|
|
return torch.float16 |
|
|
|
|
|
def intermediate_device(): |
|
if args.gpu_only: |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
|
|
def vae_device(): |
|
if args.cpu_vae: |
|
return torch.device("cpu") |
|
return get_torch_device() |
|
|
|
def vae_offload_device(): |
|
if args.gpu_only: |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
|
|
def vae_dtype(device=None, allowed_dtypes=[]): |
|
global VAE_DTYPES |
|
if args.fp16_vae: |
|
return torch.float16 |
|
elif args.bf16_vae: |
|
return torch.bfloat16 |
|
elif args.fp32_vae: |
|
return torch.float32 |
|
|
|
for d in allowed_dtypes: |
|
if d == torch.float16 and should_use_fp16(device, prioritize_performance=False): |
|
return d |
|
if d in VAE_DTYPES: |
|
return d |
|
|
|
return VAE_DTYPES[0] |
|
|
|
def get_autocast_device(dev): |
|
if hasattr(dev, 'type'): |
|
return dev.type |
|
return "cuda" |
|
|
|
def supports_dtype(device, dtype): |
|
if dtype == torch.float32: |
|
return True |
|
if is_device_cpu(device): |
|
return False |
|
if dtype == torch.float16: |
|
return True |
|
if dtype == torch.bfloat16: |
|
return True |
|
return False |
|
|
|
def supports_cast(device, dtype): |
|
if dtype == torch.float32: |
|
return True |
|
if dtype == torch.float16: |
|
return True |
|
if directml_enabled: |
|
return False |
|
if dtype == torch.bfloat16: |
|
return True |
|
if is_device_mps(device): |
|
return False |
|
if dtype == torch.float8_e4m3fn: |
|
return True |
|
if dtype == torch.float8_e5m2: |
|
return True |
|
return False |
|
|
|
def pick_weight_dtype(dtype, fallback_dtype, device=None): |
|
if dtype is None: |
|
dtype = fallback_dtype |
|
elif dtype_size(dtype) > dtype_size(fallback_dtype): |
|
dtype = fallback_dtype |
|
|
|
if not supports_cast(device, dtype): |
|
dtype = fallback_dtype |
|
|
|
return dtype |
|
|
|
def device_supports_non_blocking(device): |
|
if is_device_mps(device): |
|
return False |
|
if is_intel_xpu(): |
|
return False |
|
if args.deterministic: |
|
return False |
|
if directml_enabled: |
|
return False |
|
return True |
|
|
|
def device_should_use_non_blocking(device): |
|
if not device_supports_non_blocking(device): |
|
return False |
|
return False |
|
|
|
|
|
def force_channels_last(): |
|
if args.force_channels_last: |
|
return True |
|
|
|
|
|
return False |
|
|
|
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False): |
|
if device is None or weight.device == device: |
|
if not copy: |
|
if dtype is None or weight.dtype == dtype: |
|
return weight |
|
return weight.to(dtype=dtype, copy=copy) |
|
|
|
r = torch.empty_like(weight, dtype=dtype, device=device) |
|
r.copy_(weight, non_blocking=non_blocking) |
|
return r |
|
|
|
def cast_to_device(tensor, device, dtype, copy=False): |
|
non_blocking = device_supports_non_blocking(device) |
|
return cast_to(tensor, dtype=dtype, device=device, non_blocking=non_blocking, copy=copy) |
|
|
|
|
|
def xformers_enabled(): |
|
global directml_enabled |
|
global cpu_state |
|
if cpu_state != CPUState.GPU: |
|
return False |
|
if is_intel_xpu(): |
|
return False |
|
if directml_enabled: |
|
return False |
|
return XFORMERS_IS_AVAILABLE |
|
|
|
|
|
def xformers_enabled_vae(): |
|
enabled = xformers_enabled() |
|
if not enabled: |
|
return False |
|
|
|
return XFORMERS_ENABLED_VAE |
|
|
|
def pytorch_attention_enabled(): |
|
global ENABLE_PYTORCH_ATTENTION |
|
return ENABLE_PYTORCH_ATTENTION |
|
|
|
def pytorch_attention_flash_attention(): |
|
global ENABLE_PYTORCH_ATTENTION |
|
if ENABLE_PYTORCH_ATTENTION: |
|
|
|
if is_nvidia(): |
|
return True |
|
if is_intel_xpu(): |
|
return True |
|
return False |
|
|
|
def force_upcast_attention_dtype(): |
|
upcast = args.force_upcast_attention |
|
try: |
|
macos_version = tuple(int(n) for n in platform.mac_ver()[0].split(".")) |
|
if (14, 5) <= macos_version <= (15, 2): |
|
upcast = True |
|
except: |
|
pass |
|
if upcast: |
|
return torch.float32 |
|
else: |
|
return None |
|
|
|
def get_free_memory(dev=None, torch_free_too=False): |
|
global directml_enabled |
|
if dev is None: |
|
dev = get_torch_device() |
|
|
|
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): |
|
mem_free_total = psutil.virtual_memory().available |
|
mem_free_torch = mem_free_total |
|
else: |
|
if directml_enabled: |
|
mem_free_total = 1024 * 1024 * 1024 |
|
mem_free_torch = mem_free_total |
|
elif is_intel_xpu(): |
|
stats = torch.xpu.memory_stats(dev) |
|
mem_active = stats['active_bytes.all.current'] |
|
mem_reserved = stats['reserved_bytes.all.current'] |
|
mem_free_torch = mem_reserved - mem_active |
|
mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved |
|
mem_free_total = mem_free_xpu + mem_free_torch |
|
else: |
|
stats = torch.cuda.memory_stats(dev) |
|
mem_active = stats['active_bytes.all.current'] |
|
mem_reserved = stats['reserved_bytes.all.current'] |
|
mem_free_cuda, _ = torch.cuda.mem_get_info(dev) |
|
mem_free_torch = mem_reserved - mem_active |
|
mem_free_total = mem_free_cuda + mem_free_torch |
|
|
|
if torch_free_too: |
|
return (mem_free_total, mem_free_torch) |
|
else: |
|
return mem_free_total |
|
|
|
def cpu_mode(): |
|
global cpu_state |
|
return cpu_state == CPUState.CPU |
|
|
|
def mps_mode(): |
|
global cpu_state |
|
return cpu_state == CPUState.MPS |
|
|
|
def is_device_type(device, type): |
|
if hasattr(device, 'type'): |
|
if (device.type == type): |
|
return True |
|
return False |
|
|
|
def is_device_cpu(device): |
|
return is_device_type(device, 'cpu') |
|
|
|
def is_device_mps(device): |
|
return is_device_type(device, 'mps') |
|
|
|
def is_device_cuda(device): |
|
return is_device_type(device, 'cuda') |
|
|
|
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): |
|
global directml_enabled |
|
|
|
if device is not None: |
|
if is_device_cpu(device): |
|
return False |
|
|
|
if FORCE_FP16: |
|
return True |
|
|
|
if device is not None: |
|
if is_device_mps(device): |
|
return True |
|
|
|
if FORCE_FP32: |
|
return False |
|
|
|
if directml_enabled: |
|
return False |
|
|
|
if mps_mode(): |
|
return True |
|
|
|
if cpu_mode(): |
|
return False |
|
|
|
if is_intel_xpu(): |
|
return True |
|
|
|
if torch.version.hip: |
|
return True |
|
|
|
props = torch.cuda.get_device_properties(device) |
|
if props.major >= 8: |
|
return True |
|
|
|
if props.major < 6: |
|
return False |
|
|
|
|
|
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"] |
|
for x in nvidia_10_series: |
|
if x in props.name.lower(): |
|
if WINDOWS or manual_cast: |
|
return True |
|
else: |
|
return False |
|
|
|
if manual_cast: |
|
free_model_memory = maximum_vram_for_weights(device) |
|
if (not prioritize_performance) or model_params * 4 > free_model_memory: |
|
return True |
|
|
|
if props.major < 7: |
|
return False |
|
|
|
|
|
nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"] |
|
for x in nvidia_16_series: |
|
if x in props.name: |
|
return False |
|
|
|
return True |
|
|
|
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): |
|
if device is not None: |
|
if is_device_cpu(device): |
|
return False |
|
|
|
if device is not None: |
|
if is_device_mps(device): |
|
return True |
|
|
|
if FORCE_FP32: |
|
return False |
|
|
|
if directml_enabled: |
|
return False |
|
|
|
if mps_mode(): |
|
return True |
|
|
|
if cpu_mode(): |
|
return False |
|
|
|
if is_intel_xpu(): |
|
return True |
|
|
|
props = torch.cuda.get_device_properties(device) |
|
if props.major >= 8: |
|
return True |
|
|
|
bf16_works = torch.cuda.is_bf16_supported() |
|
|
|
if bf16_works or manual_cast: |
|
free_model_memory = maximum_vram_for_weights(device) |
|
if (not prioritize_performance) or model_params * 4 > free_model_memory: |
|
return True |
|
|
|
return False |
|
|
|
def supports_fp8_compute(device=None): |
|
if not is_nvidia(): |
|
return False |
|
|
|
props = torch.cuda.get_device_properties(device) |
|
if props.major >= 9: |
|
return True |
|
if props.major < 8: |
|
return False |
|
if props.minor < 9: |
|
return False |
|
|
|
if int(torch_version[0]) < 2 or (int(torch_version[0]) == 2 and int(torch_version[2]) < 3): |
|
return False |
|
|
|
if WINDOWS: |
|
if (int(torch_version[0]) == 2 and int(torch_version[2]) < 4): |
|
return False |
|
|
|
return True |
|
|
|
def soft_empty_cache(force=False): |
|
global cpu_state |
|
if cpu_state == CPUState.MPS: |
|
torch.mps.empty_cache() |
|
elif is_intel_xpu(): |
|
torch.xpu.empty_cache() |
|
elif torch.cuda.is_available(): |
|
if force or is_nvidia(): |
|
torch.cuda.empty_cache() |
|
torch.cuda.ipc_collect() |
|
|
|
def unload_all_models(): |
|
free_memory(1e30, get_torch_device()) |
|
|
|
|
|
def resolve_lowvram_weight(weight, model, key): |
|
print("WARNING: The comfy.model_management.resolve_lowvram_weight function will be removed soon, please stop using it.") |
|
return weight |
|
|
|
|
|
import threading |
|
|
|
class InterruptProcessingException(Exception): |
|
pass |
|
|
|
interrupt_processing_mutex = threading.RLock() |
|
|
|
interrupt_processing = False |
|
def interrupt_current_processing(value=True): |
|
global interrupt_processing |
|
global interrupt_processing_mutex |
|
with interrupt_processing_mutex: |
|
interrupt_processing = value |
|
|
|
def processing_interrupted(): |
|
global interrupt_processing |
|
global interrupt_processing_mutex |
|
with interrupt_processing_mutex: |
|
return interrupt_processing |
|
|
|
def throw_exception_if_processing_interrupted(): |
|
global interrupt_processing |
|
global interrupt_processing_mutex |
|
with interrupt_processing_mutex: |
|
if interrupt_processing: |
|
interrupt_processing = False |
|
raise InterruptProcessingException() |
|
|