|
import torch |
|
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule |
|
import math |
|
|
|
def rescale_zero_terminal_snr_sigmas(sigmas): |
|
alphas_cumprod = 1 / ((sigmas * sigmas) + 1) |
|
alphas_bar_sqrt = alphas_cumprod.sqrt() |
|
|
|
|
|
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() |
|
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() |
|
|
|
|
|
alphas_bar_sqrt -= (alphas_bar_sqrt_T) |
|
|
|
|
|
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) |
|
|
|
|
|
alphas_bar = alphas_bar_sqrt**2 |
|
alphas_bar[-1] = 4.8973451890853435e-08 |
|
return ((1 - alphas_bar) / alphas_bar) ** 0.5 |
|
|
|
class EPS: |
|
def calculate_input(self, sigma, noise): |
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1)) |
|
return noise / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 |
|
|
|
def calculate_denoised(self, sigma, model_output, model_input): |
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) |
|
return model_input - model_output * sigma |
|
|
|
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False): |
|
if max_denoise: |
|
noise = noise * torch.sqrt(1.0 + sigma ** 2.0) |
|
else: |
|
noise = noise * sigma |
|
|
|
noise += latent_image |
|
return noise |
|
|
|
def inverse_noise_scaling(self, sigma, latent): |
|
return latent |
|
|
|
class V_PREDICTION(EPS): |
|
def calculate_denoised(self, sigma, model_output, model_input): |
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) |
|
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) - model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 |
|
|
|
class EDM(V_PREDICTION): |
|
def calculate_denoised(self, sigma, model_output, model_input): |
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) |
|
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 |
|
|
|
class CONST: |
|
def calculate_input(self, sigma, noise): |
|
return noise |
|
|
|
def calculate_denoised(self, sigma, model_output, model_input): |
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) |
|
return model_input - model_output * sigma |
|
|
|
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False): |
|
return sigma * noise + (1.0 - sigma) * latent_image |
|
|
|
def inverse_noise_scaling(self, sigma, latent): |
|
return latent / (1.0 - sigma) |
|
|
|
class ModelSamplingDiscrete(torch.nn.Module): |
|
def __init__(self, model_config=None, zsnr=None): |
|
super().__init__() |
|
|
|
if model_config is not None: |
|
sampling_settings = model_config.sampling_settings |
|
else: |
|
sampling_settings = {} |
|
|
|
beta_schedule = sampling_settings.get("beta_schedule", "linear") |
|
linear_start = sampling_settings.get("linear_start", 0.00085) |
|
linear_end = sampling_settings.get("linear_end", 0.012) |
|
timesteps = sampling_settings.get("timesteps", 1000) |
|
|
|
if zsnr is None: |
|
zsnr = sampling_settings.get("zsnr", False) |
|
|
|
self._register_schedule(given_betas=None, beta_schedule=beta_schedule, timesteps=timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=8e-3, zsnr=zsnr) |
|
self.sigma_data = 1.0 |
|
|
|
def _register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, |
|
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3, zsnr=False): |
|
if given_betas is not None: |
|
betas = given_betas |
|
else: |
|
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) |
|
alphas = 1. - betas |
|
alphas_cumprod = torch.cumprod(alphas, dim=0) |
|
|
|
timesteps, = betas.shape |
|
self.num_timesteps = int(timesteps) |
|
self.linear_start = linear_start |
|
self.linear_end = linear_end |
|
|
|
|
|
|
|
|
|
|
|
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 |
|
if zsnr: |
|
sigmas = rescale_zero_terminal_snr_sigmas(sigmas) |
|
|
|
self.set_sigmas(sigmas) |
|
|
|
def set_sigmas(self, sigmas): |
|
self.register_buffer('sigmas', sigmas.float()) |
|
self.register_buffer('log_sigmas', sigmas.log().float()) |
|
|
|
@property |
|
def sigma_min(self): |
|
return self.sigmas[0] |
|
|
|
@property |
|
def sigma_max(self): |
|
return self.sigmas[-1] |
|
|
|
def timestep(self, sigma): |
|
log_sigma = sigma.log() |
|
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] |
|
return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device) |
|
|
|
def sigma(self, timestep): |
|
t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1)) |
|
low_idx = t.floor().long() |
|
high_idx = t.ceil().long() |
|
w = t.frac() |
|
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx] |
|
return log_sigma.exp().to(timestep.device) |
|
|
|
def percent_to_sigma(self, percent): |
|
if percent <= 0.0: |
|
return 999999999.9 |
|
if percent >= 1.0: |
|
return 0.0 |
|
percent = 1.0 - percent |
|
return self.sigma(torch.tensor(percent * 999.0)).item() |
|
|
|
class ModelSamplingDiscreteEDM(ModelSamplingDiscrete): |
|
def timestep(self, sigma): |
|
return 0.25 * sigma.log() |
|
|
|
def sigma(self, timestep): |
|
return (timestep / 0.25).exp() |
|
|
|
class ModelSamplingContinuousEDM(torch.nn.Module): |
|
def __init__(self, model_config=None): |
|
super().__init__() |
|
if model_config is not None: |
|
sampling_settings = model_config.sampling_settings |
|
else: |
|
sampling_settings = {} |
|
|
|
sigma_min = sampling_settings.get("sigma_min", 0.002) |
|
sigma_max = sampling_settings.get("sigma_max", 120.0) |
|
sigma_data = sampling_settings.get("sigma_data", 1.0) |
|
self.set_parameters(sigma_min, sigma_max, sigma_data) |
|
|
|
def set_parameters(self, sigma_min, sigma_max, sigma_data): |
|
self.sigma_data = sigma_data |
|
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), 1000).exp() |
|
|
|
self.register_buffer('sigmas', sigmas) |
|
self.register_buffer('log_sigmas', sigmas.log()) |
|
|
|
@property |
|
def sigma_min(self): |
|
return self.sigmas[0] |
|
|
|
@property |
|
def sigma_max(self): |
|
return self.sigmas[-1] |
|
|
|
def timestep(self, sigma): |
|
return 0.25 * sigma.log() |
|
|
|
def sigma(self, timestep): |
|
return (timestep / 0.25).exp() |
|
|
|
def percent_to_sigma(self, percent): |
|
if percent <= 0.0: |
|
return 999999999.9 |
|
if percent >= 1.0: |
|
return 0.0 |
|
percent = 1.0 - percent |
|
|
|
log_sigma_min = math.log(self.sigma_min) |
|
return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min) |
|
|
|
|
|
class ModelSamplingContinuousV(ModelSamplingContinuousEDM): |
|
def timestep(self, sigma): |
|
return sigma.atan() / math.pi * 2 |
|
|
|
def sigma(self, timestep): |
|
return (timestep * math.pi / 2).tan() |
|
|
|
|
|
def time_snr_shift(alpha, t): |
|
if alpha == 1.0: |
|
return t |
|
return alpha * t / (1 + (alpha - 1) * t) |
|
|
|
class ModelSamplingDiscreteFlow(torch.nn.Module): |
|
def __init__(self, model_config=None): |
|
super().__init__() |
|
if model_config is not None: |
|
sampling_settings = model_config.sampling_settings |
|
else: |
|
sampling_settings = {} |
|
|
|
self.set_parameters(shift=sampling_settings.get("shift", 1.0), multiplier=sampling_settings.get("multiplier", 1000)) |
|
|
|
def set_parameters(self, shift=1.0, timesteps=1000, multiplier=1000): |
|
self.shift = shift |
|
self.multiplier = multiplier |
|
ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps) * multiplier) |
|
self.register_buffer('sigmas', ts) |
|
|
|
@property |
|
def sigma_min(self): |
|
return self.sigmas[0] |
|
|
|
@property |
|
def sigma_max(self): |
|
return self.sigmas[-1] |
|
|
|
def timestep(self, sigma): |
|
return sigma * self.multiplier |
|
|
|
def sigma(self, timestep): |
|
return time_snr_shift(self.shift, timestep / self.multiplier) |
|
|
|
def percent_to_sigma(self, percent): |
|
if percent <= 0.0: |
|
return 1.0 |
|
if percent >= 1.0: |
|
return 0.0 |
|
return 1.0 - percent |
|
|
|
class StableCascadeSampling(ModelSamplingDiscrete): |
|
def __init__(self, model_config=None): |
|
super().__init__() |
|
|
|
if model_config is not None: |
|
sampling_settings = model_config.sampling_settings |
|
else: |
|
sampling_settings = {} |
|
|
|
self.set_parameters(sampling_settings.get("shift", 1.0)) |
|
|
|
def set_parameters(self, shift=1.0, cosine_s=8e-3): |
|
self.shift = shift |
|
self.cosine_s = torch.tensor(cosine_s) |
|
self._init_alpha_cumprod = torch.cos(self.cosine_s / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 |
|
|
|
|
|
self.num_timesteps = 10000 |
|
sigmas = torch.empty((self.num_timesteps), dtype=torch.float32) |
|
for x in range(self.num_timesteps): |
|
t = (x + 1) / self.num_timesteps |
|
sigmas[x] = self.sigma(t) |
|
|
|
self.set_sigmas(sigmas) |
|
|
|
def sigma(self, timestep): |
|
alpha_cumprod = (torch.cos((timestep + self.cosine_s) / (1 + self.cosine_s) * torch.pi * 0.5) ** 2 / self._init_alpha_cumprod) |
|
|
|
if self.shift != 1.0: |
|
var = alpha_cumprod |
|
logSNR = (var/(1-var)).log() |
|
logSNR += 2 * torch.log(1.0 / torch.tensor(self.shift)) |
|
alpha_cumprod = logSNR.sigmoid() |
|
|
|
alpha_cumprod = alpha_cumprod.clamp(0.0001, 0.9999) |
|
return ((1 - alpha_cumprod) / alpha_cumprod) ** 0.5 |
|
|
|
def timestep(self, sigma): |
|
var = 1 / ((sigma * sigma) + 1) |
|
var = var.clamp(0, 1.0) |
|
s, min_var = self.cosine_s.to(var.device), self._init_alpha_cumprod.to(var.device) |
|
t = (((var * min_var) ** 0.5).acos() / (torch.pi * 0.5)) * (1 + s) - s |
|
return t |
|
|
|
def percent_to_sigma(self, percent): |
|
if percent <= 0.0: |
|
return 999999999.9 |
|
if percent >= 1.0: |
|
return 0.0 |
|
|
|
percent = 1.0 - percent |
|
return self.sigma(torch.tensor(percent)) |
|
|
|
|
|
def flux_time_shift(mu: float, sigma: float, t): |
|
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) |
|
|
|
class ModelSamplingFlux(torch.nn.Module): |
|
def __init__(self, model_config=None): |
|
super().__init__() |
|
if model_config is not None: |
|
sampling_settings = model_config.sampling_settings |
|
else: |
|
sampling_settings = {} |
|
|
|
self.set_parameters(shift=sampling_settings.get("shift", 1.15)) |
|
|
|
def set_parameters(self, shift=1.15, timesteps=10000): |
|
self.shift = shift |
|
ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps)) |
|
self.register_buffer('sigmas', ts) |
|
|
|
@property |
|
def sigma_min(self): |
|
return self.sigmas[0] |
|
|
|
@property |
|
def sigma_max(self): |
|
return self.sigmas[-1] |
|
|
|
def timestep(self, sigma): |
|
return sigma |
|
|
|
def sigma(self, timestep): |
|
return flux_time_shift(self.shift, 1.0, timestep) |
|
|
|
def percent_to_sigma(self, percent): |
|
if percent <= 0.0: |
|
return 1.0 |
|
if percent >= 1.0: |
|
return 0.0 |
|
return 1.0 - percent |
|
|