|
import torch |
|
from enum import Enum |
|
import logging |
|
|
|
from comfy import model_management |
|
from .ldm.models.autoencoder import AutoencoderKL, AutoencodingEngine |
|
from .ldm.cascade.stage_a import StageA |
|
from .ldm.cascade.stage_c_coder import StageC_coder |
|
from .ldm.audio.autoencoder import AudioOobleckVAE |
|
import comfy.ldm.genmo.vae.model |
|
import comfy.ldm.lightricks.vae.causal_video_autoencoder |
|
import yaml |
|
|
|
import comfy.utils |
|
|
|
from . import clip_vision |
|
from . import gligen |
|
from . import diffusers_convert |
|
from . import model_detection |
|
|
|
from . import sd1_clip |
|
from . import sdxl_clip |
|
import comfy.text_encoders.sd2_clip |
|
import comfy.text_encoders.sd3_clip |
|
import comfy.text_encoders.sa_t5 |
|
import comfy.text_encoders.aura_t5 |
|
import comfy.text_encoders.hydit |
|
import comfy.text_encoders.flux |
|
import comfy.text_encoders.long_clipl |
|
import comfy.text_encoders.genmo |
|
import comfy.text_encoders.lt |
|
|
|
import comfy.model_patcher |
|
import comfy.lora |
|
import comfy.lora_convert |
|
import comfy.t2i_adapter.adapter |
|
import comfy.taesd.taesd |
|
|
|
import comfy.ldm.flux.redux |
|
|
|
def load_lora_for_models(model, clip, lora, strength_model, strength_clip): |
|
key_map = {} |
|
if model is not None: |
|
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map) |
|
if clip is not None: |
|
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map) |
|
|
|
lora = comfy.lora_convert.convert_lora(lora) |
|
loaded = comfy.lora.load_lora(lora, key_map) |
|
if model is not None: |
|
new_modelpatcher = model.clone() |
|
k = new_modelpatcher.add_patches(loaded, strength_model) |
|
else: |
|
k = () |
|
new_modelpatcher = None |
|
|
|
if clip is not None: |
|
new_clip = clip.clone() |
|
k1 = new_clip.add_patches(loaded, strength_clip) |
|
else: |
|
k1 = () |
|
new_clip = None |
|
k = set(k) |
|
k1 = set(k1) |
|
for x in loaded: |
|
if (x not in k) and (x not in k1): |
|
logging.warning("NOT LOADED {}".format(x)) |
|
|
|
return (new_modelpatcher, new_clip) |
|
|
|
|
|
class CLIP: |
|
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, model_options={}): |
|
if no_init: |
|
return |
|
params = target.params.copy() |
|
clip = target.clip |
|
tokenizer = target.tokenizer |
|
|
|
load_device = model_options.get("load_device", model_management.text_encoder_device()) |
|
offload_device = model_options.get("offload_device", model_management.text_encoder_offload_device()) |
|
dtype = model_options.get("dtype", None) |
|
if dtype is None: |
|
dtype = model_management.text_encoder_dtype(load_device) |
|
|
|
params['dtype'] = dtype |
|
params['device'] = model_options.get("initial_device", model_management.text_encoder_initial_device(load_device, offload_device, parameters * model_management.dtype_size(dtype))) |
|
params['model_options'] = model_options |
|
|
|
self.cond_stage_model = clip(**(params)) |
|
|
|
for dt in self.cond_stage_model.dtypes: |
|
if not model_management.supports_cast(load_device, dt): |
|
load_device = offload_device |
|
if params['device'] != offload_device: |
|
self.cond_stage_model.to(offload_device) |
|
logging.warning("Had to shift TE back.") |
|
|
|
self.tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data) |
|
self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device) |
|
if params['device'] == load_device: |
|
model_management.load_models_gpu([self.patcher], force_full_load=True) |
|
self.layer_idx = None |
|
logging.debug("CLIP model load device: {}, offload device: {}, current: {}".format(load_device, offload_device, params['device'])) |
|
|
|
def clone(self): |
|
n = CLIP(no_init=True) |
|
n.patcher = self.patcher.clone() |
|
n.cond_stage_model = self.cond_stage_model |
|
n.tokenizer = self.tokenizer |
|
n.layer_idx = self.layer_idx |
|
return n |
|
|
|
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0): |
|
return self.patcher.add_patches(patches, strength_patch, strength_model) |
|
|
|
def clip_layer(self, layer_idx): |
|
self.layer_idx = layer_idx |
|
|
|
def tokenize(self, text, return_word_ids=False): |
|
return self.tokenizer.tokenize_with_weights(text, return_word_ids) |
|
|
|
def encode_from_tokens(self, tokens, return_pooled=False, return_dict=False): |
|
self.cond_stage_model.reset_clip_options() |
|
|
|
if self.layer_idx is not None: |
|
self.cond_stage_model.set_clip_options({"layer": self.layer_idx}) |
|
|
|
if return_pooled == "unprojected": |
|
self.cond_stage_model.set_clip_options({"projected_pooled": False}) |
|
|
|
self.load_model() |
|
o = self.cond_stage_model.encode_token_weights(tokens) |
|
cond, pooled = o[:2] |
|
if return_dict: |
|
out = {"cond": cond, "pooled_output": pooled} |
|
if len(o) > 2: |
|
for k in o[2]: |
|
out[k] = o[2][k] |
|
return out |
|
|
|
if return_pooled: |
|
return cond, pooled |
|
return cond |
|
|
|
def encode(self, text): |
|
tokens = self.tokenize(text) |
|
return self.encode_from_tokens(tokens) |
|
|
|
def load_sd(self, sd, full_model=False): |
|
if full_model: |
|
return self.cond_stage_model.load_state_dict(sd, strict=False) |
|
else: |
|
return self.cond_stage_model.load_sd(sd) |
|
|
|
def get_sd(self): |
|
sd_clip = self.cond_stage_model.state_dict() |
|
sd_tokenizer = self.tokenizer.state_dict() |
|
for k in sd_tokenizer: |
|
sd_clip[k] = sd_tokenizer[k] |
|
return sd_clip |
|
|
|
def load_model(self): |
|
model_management.load_model_gpu(self.patcher) |
|
return self.patcher |
|
|
|
def get_key_patches(self): |
|
return self.patcher.get_key_patches() |
|
|
|
class VAE: |
|
def __init__(self, sd=None, device=None, config=None, dtype=None): |
|
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): |
|
sd = diffusers_convert.convert_vae_state_dict(sd) |
|
|
|
self.memory_used_encode = lambda shape, dtype: (1767 * shape[2] * shape[3]) * model_management.dtype_size(dtype) |
|
self.memory_used_decode = lambda shape, dtype: (2178 * shape[2] * shape[3] * 64) * model_management.dtype_size(dtype) |
|
self.downscale_ratio = 8 |
|
self.upscale_ratio = 8 |
|
self.latent_channels = 4 |
|
self.latent_dim = 2 |
|
self.output_channels = 3 |
|
self.process_input = lambda image: image * 2.0 - 1.0 |
|
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0) |
|
self.working_dtypes = [torch.bfloat16, torch.float32] |
|
|
|
if config is None: |
|
if "decoder.mid.block_1.mix_factor" in sd: |
|
encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} |
|
decoder_config = encoder_config.copy() |
|
decoder_config["video_kernel_size"] = [3, 1, 1] |
|
decoder_config["alpha"] = 0.0 |
|
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"}, |
|
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': encoder_config}, |
|
decoder_config={'target': "comfy.ldm.modules.temporal_ae.VideoDecoder", 'params': decoder_config}) |
|
elif "taesd_decoder.1.weight" in sd: |
|
self.latent_channels = sd["taesd_decoder.1.weight"].shape[1] |
|
self.first_stage_model = comfy.taesd.taesd.TAESD(latent_channels=self.latent_channels) |
|
elif "vquantizer.codebook.weight" in sd: |
|
self.first_stage_model = StageA() |
|
self.downscale_ratio = 4 |
|
self.upscale_ratio = 4 |
|
|
|
|
|
|
|
self.process_input = lambda image: image |
|
self.process_output = lambda image: image |
|
elif "backbone.1.0.block.0.1.num_batches_tracked" in sd: |
|
self.first_stage_model = StageC_coder() |
|
self.downscale_ratio = 32 |
|
self.latent_channels = 16 |
|
new_sd = {} |
|
for k in sd: |
|
new_sd["encoder.{}".format(k)] = sd[k] |
|
sd = new_sd |
|
elif "blocks.11.num_batches_tracked" in sd: |
|
self.first_stage_model = StageC_coder() |
|
self.latent_channels = 16 |
|
new_sd = {} |
|
for k in sd: |
|
new_sd["previewer.{}".format(k)] = sd[k] |
|
sd = new_sd |
|
elif "encoder.backbone.1.0.block.0.1.num_batches_tracked" in sd: |
|
self.first_stage_model = StageC_coder() |
|
self.downscale_ratio = 32 |
|
self.latent_channels = 16 |
|
elif "decoder.conv_in.weight" in sd: |
|
|
|
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} |
|
|
|
if 'encoder.down.2.downsample.conv.weight' not in sd and 'decoder.up.3.upsample.conv.weight' not in sd: |
|
ddconfig['ch_mult'] = [1, 2, 4] |
|
self.downscale_ratio = 4 |
|
self.upscale_ratio = 4 |
|
|
|
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1] |
|
if 'quant_conv.weight' in sd: |
|
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4) |
|
else: |
|
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"}, |
|
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig}, |
|
decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig}) |
|
elif "decoder.layers.1.layers.0.beta" in sd: |
|
self.first_stage_model = AudioOobleckVAE() |
|
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype) |
|
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype) |
|
self.latent_channels = 64 |
|
self.output_channels = 2 |
|
self.upscale_ratio = 2048 |
|
self.downscale_ratio = 2048 |
|
self.latent_dim = 1 |
|
self.process_output = lambda audio: audio |
|
self.process_input = lambda audio: audio |
|
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32] |
|
elif "blocks.2.blocks.3.stack.5.weight" in sd or "decoder.blocks.2.blocks.3.stack.5.weight" in sd or "layers.4.layers.1.attn_block.attn.qkv.weight" in sd or "encoder.layers.4.layers.1.attn_block.attn.qkv.weight" in sd: |
|
if "blocks.2.blocks.3.stack.5.weight" in sd: |
|
sd = comfy.utils.state_dict_prefix_replace(sd, {"": "decoder."}) |
|
if "layers.4.layers.1.attn_block.attn.qkv.weight" in sd: |
|
sd = comfy.utils.state_dict_prefix_replace(sd, {"": "encoder."}) |
|
self.first_stage_model = comfy.ldm.genmo.vae.model.VideoVAE() |
|
self.latent_channels = 12 |
|
self.latent_dim = 3 |
|
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype) |
|
self.memory_used_encode = lambda shape, dtype: (1.5 * max(shape[2], 7) * shape[3] * shape[4] * (6 * 8 * 8)) * model_management.dtype_size(dtype) |
|
self.upscale_ratio = (lambda a: max(0, a * 6 - 5), 8, 8) |
|
self.working_dtypes = [torch.float16, torch.float32] |
|
elif "decoder.up_blocks.0.res_blocks.0.conv1.conv.weight" in sd: |
|
self.first_stage_model = comfy.ldm.lightricks.vae.causal_video_autoencoder.VideoVAE() |
|
self.latent_channels = 128 |
|
self.latent_dim = 3 |
|
self.memory_used_decode = lambda shape, dtype: (900 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype) |
|
self.memory_used_encode = lambda shape, dtype: (70 * max(shape[2], 7) * shape[3] * shape[4]) * model_management.dtype_size(dtype) |
|
self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 32, 32) |
|
self.working_dtypes = [torch.bfloat16, torch.float32] |
|
else: |
|
logging.warning("WARNING: No VAE weights detected, VAE not initalized.") |
|
self.first_stage_model = None |
|
return |
|
else: |
|
self.first_stage_model = AutoencoderKL(**(config['params'])) |
|
self.first_stage_model = self.first_stage_model.eval() |
|
|
|
m, u = self.first_stage_model.load_state_dict(sd, strict=False) |
|
if len(m) > 0: |
|
logging.warning("Missing VAE keys {}".format(m)) |
|
|
|
if len(u) > 0: |
|
logging.debug("Leftover VAE keys {}".format(u)) |
|
|
|
if device is None: |
|
device = model_management.vae_device() |
|
self.device = device |
|
offload_device = model_management.vae_offload_device() |
|
if dtype is None: |
|
dtype = model_management.vae_dtype(self.device, self.working_dtypes) |
|
self.vae_dtype = dtype |
|
self.first_stage_model.to(self.vae_dtype) |
|
self.output_device = model_management.intermediate_device() |
|
|
|
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device) |
|
logging.debug("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype)) |
|
|
|
def vae_encode_crop_pixels(self, pixels): |
|
dims = pixels.shape[1:-1] |
|
for d in range(len(dims)): |
|
x = (dims[d] // self.downscale_ratio) * self.downscale_ratio |
|
x_offset = (dims[d] % self.downscale_ratio) // 2 |
|
if x != dims[d]: |
|
pixels = pixels.narrow(d + 1, x_offset, x) |
|
return pixels |
|
|
|
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16): |
|
steps = samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap) |
|
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap) |
|
steps += samples.shape[0] * comfy.utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap) |
|
pbar = comfy.utils.ProgressBar(steps) |
|
|
|
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float() |
|
output = self.process_output( |
|
(comfy.utils.tiled_scale(samples, decode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) + |
|
comfy.utils.tiled_scale(samples, decode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar) + |
|
comfy.utils.tiled_scale(samples, decode_fn, tile_x, tile_y, overlap, upscale_amount = self.upscale_ratio, output_device=self.output_device, pbar = pbar)) |
|
/ 3.0) |
|
return output |
|
|
|
def decode_tiled_1d(self, samples, tile_x=128, overlap=32): |
|
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float() |
|
return comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device) |
|
|
|
def decode_tiled_3d(self, samples, tile_t=999, tile_x=32, tile_y=32, overlap=(1, 8, 8)): |
|
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float() |
|
return self.process_output(comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device)) |
|
|
|
def encode_tiled_(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): |
|
steps = pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap) |
|
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap) |
|
steps += pixel_samples.shape[0] * comfy.utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap) |
|
pbar = comfy.utils.ProgressBar(steps) |
|
|
|
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float() |
|
samples = comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x, tile_y, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar) |
|
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x * 2, tile_y // 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar) |
|
samples += comfy.utils.tiled_scale(pixel_samples, encode_fn, tile_x // 2, tile_y * 2, overlap, upscale_amount = (1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device, pbar=pbar) |
|
samples /= 3.0 |
|
return samples |
|
|
|
def encode_tiled_1d(self, samples, tile_x=128 * 2048, overlap=32 * 2048): |
|
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float() |
|
return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=(1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device) |
|
|
|
def decode(self, samples_in): |
|
pixel_samples = None |
|
try: |
|
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype) |
|
model_management.load_models_gpu([self.patcher], memory_required=memory_used) |
|
free_memory = model_management.get_free_memory(self.device) |
|
batch_number = int(free_memory / memory_used) |
|
batch_number = max(1, batch_number) |
|
|
|
for x in range(0, samples_in.shape[0], batch_number): |
|
samples = samples_in[x:x+batch_number].to(self.vae_dtype).to(self.device) |
|
out = self.process_output(self.first_stage_model.decode(samples).to(self.output_device).float()) |
|
if pixel_samples is None: |
|
pixel_samples = torch.empty((samples_in.shape[0],) + tuple(out.shape[1:]), device=self.output_device) |
|
pixel_samples[x:x+batch_number] = out |
|
except model_management.OOM_EXCEPTION as e: |
|
logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.") |
|
dims = samples_in.ndim - 2 |
|
if dims == 1: |
|
pixel_samples = self.decode_tiled_1d(samples_in) |
|
elif dims == 2: |
|
pixel_samples = self.decode_tiled_(samples_in) |
|
elif dims == 3: |
|
tile = 256 // self.spacial_compression_decode() |
|
overlap = tile // 4 |
|
pixel_samples = self.decode_tiled_3d(samples_in, tile_x=tile, tile_y=tile, overlap=(1, overlap, overlap)) |
|
|
|
pixel_samples = pixel_samples.to(self.output_device).movedim(1,-1) |
|
return pixel_samples |
|
|
|
def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None): |
|
memory_used = self.memory_used_decode(samples.shape, self.vae_dtype) |
|
model_management.load_models_gpu([self.patcher], memory_required=memory_used) |
|
dims = samples.ndim - 2 |
|
args = {} |
|
if tile_x is not None: |
|
args["tile_x"] = tile_x |
|
if tile_y is not None: |
|
args["tile_y"] = tile_y |
|
if overlap is not None: |
|
args["overlap"] = overlap |
|
|
|
if dims == 1: |
|
args.pop("tile_y") |
|
output = self.decode_tiled_1d(samples, **args) |
|
elif dims == 2: |
|
output = self.decode_tiled_(samples, **args) |
|
elif dims == 3: |
|
output = self.decode_tiled_3d(samples, **args) |
|
return output.movedim(1, -1) |
|
|
|
def encode(self, pixel_samples): |
|
pixel_samples = self.vae_encode_crop_pixels(pixel_samples) |
|
pixel_samples = pixel_samples.movedim(-1, 1) |
|
if self.latent_dim == 3: |
|
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0) |
|
try: |
|
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) |
|
model_management.load_models_gpu([self.patcher], memory_required=memory_used) |
|
free_memory = model_management.get_free_memory(self.device) |
|
batch_number = int(free_memory / max(1, memory_used)) |
|
batch_number = max(1, batch_number) |
|
samples = None |
|
for x in range(0, pixel_samples.shape[0], batch_number): |
|
pixels_in = self.process_input(pixel_samples[x:x + batch_number]).to(self.vae_dtype).to(self.device) |
|
out = self.first_stage_model.encode(pixels_in).to(self.output_device).float() |
|
if samples is None: |
|
samples = torch.empty((pixel_samples.shape[0],) + tuple(out.shape[1:]), device=self.output_device) |
|
samples[x:x + batch_number] = out |
|
|
|
except model_management.OOM_EXCEPTION as e: |
|
logging.warning("Warning: Ran out of memory when regular VAE encoding, retrying with tiled VAE encoding.") |
|
if len(pixel_samples.shape) == 3: |
|
samples = self.encode_tiled_1d(pixel_samples) |
|
else: |
|
samples = self.encode_tiled_(pixel_samples) |
|
|
|
return samples |
|
|
|
def encode_tiled(self, pixel_samples, tile_x=512, tile_y=512, overlap = 64): |
|
pixel_samples = self.vae_encode_crop_pixels(pixel_samples) |
|
model_management.load_model_gpu(self.patcher) |
|
pixel_samples = pixel_samples.movedim(-1,1) |
|
samples = self.encode_tiled_(pixel_samples, tile_x=tile_x, tile_y=tile_y, overlap=overlap) |
|
return samples |
|
|
|
def get_sd(self): |
|
return self.first_stage_model.state_dict() |
|
|
|
def spacial_compression_decode(self): |
|
try: |
|
return self.upscale_ratio[-1] |
|
except: |
|
return self.upscale_ratio |
|
|
|
class StyleModel: |
|
def __init__(self, model, device="cpu"): |
|
self.model = model |
|
|
|
def get_cond(self, input): |
|
return self.model(input.last_hidden_state) |
|
|
|
|
|
def load_style_model(ckpt_path): |
|
model_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) |
|
keys = model_data.keys() |
|
if "style_embedding" in keys: |
|
model = comfy.t2i_adapter.adapter.StyleAdapter(width=1024, context_dim=768, num_head=8, n_layes=3, num_token=8) |
|
elif "redux_down.weight" in keys: |
|
model = comfy.ldm.flux.redux.ReduxImageEncoder() |
|
else: |
|
raise Exception("invalid style model {}".format(ckpt_path)) |
|
model.load_state_dict(model_data) |
|
return StyleModel(model) |
|
|
|
class CLIPType(Enum): |
|
STABLE_DIFFUSION = 1 |
|
STABLE_CASCADE = 2 |
|
SD3 = 3 |
|
STABLE_AUDIO = 4 |
|
HUNYUAN_DIT = 5 |
|
FLUX = 6 |
|
MOCHI = 7 |
|
LTXV = 8 |
|
|
|
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): |
|
clip_data = [] |
|
for p in ckpt_paths: |
|
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True)) |
|
return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options) |
|
|
|
|
|
class TEModel(Enum): |
|
CLIP_L = 1 |
|
CLIP_H = 2 |
|
CLIP_G = 3 |
|
T5_XXL = 4 |
|
T5_XL = 5 |
|
T5_BASE = 6 |
|
|
|
def detect_te_model(sd): |
|
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd: |
|
return TEModel.CLIP_G |
|
if "text_model.encoder.layers.22.mlp.fc1.weight" in sd: |
|
return TEModel.CLIP_H |
|
if "text_model.encoder.layers.0.mlp.fc1.weight" in sd: |
|
return TEModel.CLIP_L |
|
if "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd: |
|
weight = sd["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"] |
|
if weight.shape[-1] == 4096: |
|
return TEModel.T5_XXL |
|
elif weight.shape[-1] == 2048: |
|
return TEModel.T5_XL |
|
if "encoder.block.0.layer.0.SelfAttention.k.weight" in sd: |
|
return TEModel.T5_BASE |
|
return None |
|
|
|
|
|
def t5xxl_detect(clip_data): |
|
weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" |
|
|
|
for sd in clip_data: |
|
if weight_name in sd: |
|
return comfy.text_encoders.sd3_clip.t5_xxl_detect(sd) |
|
|
|
return {} |
|
|
|
|
|
def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): |
|
clip_data = state_dicts |
|
|
|
class EmptyClass: |
|
pass |
|
|
|
for i in range(len(clip_data)): |
|
if "transformer.resblocks.0.ln_1.weight" in clip_data[i]: |
|
clip_data[i] = comfy.utils.clip_text_transformers_convert(clip_data[i], "", "") |
|
else: |
|
if "text_projection" in clip_data[i]: |
|
clip_data[i]["text_projection.weight"] = clip_data[i]["text_projection"].transpose(0, 1) |
|
|
|
clip_target = EmptyClass() |
|
clip_target.params = {} |
|
if len(clip_data) == 1: |
|
te_model = detect_te_model(clip_data[0]) |
|
if te_model == TEModel.CLIP_G: |
|
if clip_type == CLIPType.STABLE_CASCADE: |
|
clip_target.clip = sdxl_clip.StableCascadeClipModel |
|
clip_target.tokenizer = sdxl_clip.StableCascadeTokenizer |
|
elif clip_type == CLIPType.SD3: |
|
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False) |
|
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer |
|
else: |
|
clip_target.clip = sdxl_clip.SDXLRefinerClipModel |
|
clip_target.tokenizer = sdxl_clip.SDXLTokenizer |
|
elif te_model == TEModel.CLIP_H: |
|
clip_target.clip = comfy.text_encoders.sd2_clip.SD2ClipModel |
|
clip_target.tokenizer = comfy.text_encoders.sd2_clip.SD2Tokenizer |
|
elif te_model == TEModel.T5_XXL: |
|
if clip_type == CLIPType.SD3: |
|
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=False, t5=True, **t5xxl_detect(clip_data)) |
|
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer |
|
elif clip_type == CLIPType.LTXV: |
|
clip_target.clip = comfy.text_encoders.lt.ltxv_te(**t5xxl_detect(clip_data)) |
|
clip_target.tokenizer = comfy.text_encoders.lt.LTXVT5Tokenizer |
|
else: |
|
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data)) |
|
clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer |
|
elif te_model == TEModel.T5_XL: |
|
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model |
|
clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer |
|
elif te_model == TEModel.T5_BASE: |
|
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model |
|
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer |
|
else: |
|
if clip_type == CLIPType.SD3: |
|
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False) |
|
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer |
|
else: |
|
clip_target.clip = sd1_clip.SD1ClipModel |
|
clip_target.tokenizer = sd1_clip.SD1Tokenizer |
|
elif len(clip_data) == 2: |
|
if clip_type == CLIPType.SD3: |
|
te_models = [detect_te_model(clip_data[0]), detect_te_model(clip_data[1])] |
|
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=TEModel.CLIP_L in te_models, clip_g=TEModel.CLIP_G in te_models, t5=TEModel.T5_XXL in te_models, **t5xxl_detect(clip_data)) |
|
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer |
|
elif clip_type == CLIPType.HUNYUAN_DIT: |
|
clip_target.clip = comfy.text_encoders.hydit.HyditModel |
|
clip_target.tokenizer = comfy.text_encoders.hydit.HyditTokenizer |
|
elif clip_type == CLIPType.FLUX: |
|
clip_target.clip = comfy.text_encoders.flux.flux_clip(**t5xxl_detect(clip_data)) |
|
clip_target.tokenizer = comfy.text_encoders.flux.FluxTokenizer |
|
else: |
|
clip_target.clip = sdxl_clip.SDXLClipModel |
|
clip_target.tokenizer = sdxl_clip.SDXLTokenizer |
|
elif len(clip_data) == 3: |
|
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(**t5xxl_detect(clip_data)) |
|
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer |
|
|
|
parameters = 0 |
|
tokenizer_data = {} |
|
for c in clip_data: |
|
parameters += comfy.utils.calculate_parameters(c) |
|
tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options) |
|
|
|
clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, model_options=model_options) |
|
for c in clip_data: |
|
m, u = clip.load_sd(c) |
|
if len(m) > 0: |
|
logging.warning("clip missing: {}".format(m)) |
|
|
|
if len(u) > 0: |
|
logging.debug("clip unexpected: {}".format(u)) |
|
return clip |
|
|
|
def load_gligen(ckpt_path): |
|
data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) |
|
model = gligen.load_gligen(data) |
|
if model_management.should_use_fp16(): |
|
model = model.half() |
|
return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device()) |
|
|
|
def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None): |
|
logging.warning("Warning: The load checkpoint with config function is deprecated and will eventually be removed, please use the other one.") |
|
model, clip, vae, _ = load_checkpoint_guess_config(ckpt_path, output_vae=output_vae, output_clip=output_clip, output_clipvision=False, embedding_directory=embedding_directory, output_model=True) |
|
|
|
if config is None: |
|
with open(config_path, 'r') as stream: |
|
config = yaml.safe_load(stream) |
|
model_config_params = config['model']['params'] |
|
clip_config = model_config_params['cond_stage_config'] |
|
scale_factor = model_config_params['scale_factor'] |
|
|
|
if "parameterization" in model_config_params: |
|
if model_config_params["parameterization"] == "v": |
|
m = model.clone() |
|
class ModelSamplingAdvanced(comfy.model_sampling.ModelSamplingDiscrete, comfy.model_sampling.V_PREDICTION): |
|
pass |
|
m.add_object_patch("model_sampling", ModelSamplingAdvanced(model.model.model_config)) |
|
model = m |
|
|
|
layer_idx = clip_config.get("params", {}).get("layer_idx", None) |
|
if layer_idx is not None: |
|
clip.clip_layer(layer_idx) |
|
|
|
return (model, clip, vae) |
|
|
|
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}): |
|
sd = comfy.utils.load_torch_file(ckpt_path) |
|
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options, te_model_options=te_model_options) |
|
if out is None: |
|
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path)) |
|
return out |
|
|
|
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}, te_model_options={}): |
|
clip = None |
|
clipvision = None |
|
vae = None |
|
model = None |
|
model_patcher = None |
|
|
|
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd) |
|
parameters = comfy.utils.calculate_parameters(sd, diffusion_model_prefix) |
|
weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix) |
|
load_device = model_management.get_torch_device() |
|
|
|
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix) |
|
if model_config is None: |
|
return None |
|
|
|
unet_weight_dtype = list(model_config.supported_inference_dtypes) |
|
if weight_dtype is not None and model_config.scaled_fp8 is None: |
|
unet_weight_dtype.append(weight_dtype) |
|
|
|
model_config.custom_operations = model_options.get("custom_operations", None) |
|
unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None)) |
|
|
|
if unet_dtype is None: |
|
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype) |
|
|
|
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) |
|
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype) |
|
|
|
if model_config.clip_vision_prefix is not None: |
|
if output_clipvision: |
|
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True) |
|
|
|
if output_model: |
|
inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype) |
|
model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device) |
|
model.load_model_weights(sd, diffusion_model_prefix) |
|
|
|
if output_vae: |
|
vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True) |
|
vae_sd = model_config.process_vae_state_dict(vae_sd) |
|
vae = VAE(sd=vae_sd) |
|
|
|
if output_clip: |
|
clip_target = model_config.clip_target(state_dict=sd) |
|
if clip_target is not None: |
|
clip_sd = model_config.process_clip_state_dict(sd) |
|
if len(clip_sd) > 0: |
|
parameters = comfy.utils.calculate_parameters(clip_sd) |
|
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options) |
|
m, u = clip.load_sd(clip_sd, full_model=True) |
|
if len(m) > 0: |
|
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m)) |
|
if len(m_filter) > 0: |
|
logging.warning("clip missing: {}".format(m)) |
|
else: |
|
logging.debug("clip missing: {}".format(m)) |
|
|
|
if len(u) > 0: |
|
logging.debug("clip unexpected {}:".format(u)) |
|
else: |
|
logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.") |
|
|
|
left_over = sd.keys() |
|
if len(left_over) > 0: |
|
logging.debug("left over keys: {}".format(left_over)) |
|
|
|
if output_model: |
|
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device()) |
|
if inital_load_device != torch.device("cpu"): |
|
logging.info("loaded straight to GPU") |
|
model_management.load_models_gpu([model_patcher], force_full_load=True) |
|
|
|
return (model_patcher, clip, vae, clipvision) |
|
|
|
|
|
def load_diffusion_model_state_dict(sd, model_options={}): |
|
dtype = model_options.get("dtype", None) |
|
|
|
|
|
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd) |
|
temp_sd = comfy.utils.state_dict_prefix_replace(sd, {diffusion_model_prefix: ""}, filter_keys=True) |
|
if len(temp_sd) > 0: |
|
sd = temp_sd |
|
|
|
parameters = comfy.utils.calculate_parameters(sd) |
|
weight_dtype = comfy.utils.weight_dtype(sd) |
|
|
|
load_device = model_management.get_torch_device() |
|
model_config = model_detection.model_config_from_unet(sd, "") |
|
|
|
if model_config is not None: |
|
new_sd = sd |
|
else: |
|
new_sd = model_detection.convert_diffusers_mmdit(sd, "") |
|
if new_sd is not None: |
|
model_config = model_detection.model_config_from_unet(new_sd, "") |
|
if model_config is None: |
|
return None |
|
else: |
|
model_config = model_detection.model_config_from_diffusers_unet(sd) |
|
if model_config is None: |
|
return None |
|
|
|
diffusers_keys = comfy.utils.unet_to_diffusers(model_config.unet_config) |
|
|
|
new_sd = {} |
|
for k in diffusers_keys: |
|
if k in sd: |
|
new_sd[diffusers_keys[k]] = sd.pop(k) |
|
else: |
|
logging.warning("{} {}".format(diffusers_keys[k], k)) |
|
|
|
offload_device = model_management.unet_offload_device() |
|
unet_weight_dtype = list(model_config.supported_inference_dtypes) |
|
if weight_dtype is not None and model_config.scaled_fp8 is None: |
|
unet_weight_dtype.append(weight_dtype) |
|
|
|
if dtype is None: |
|
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype) |
|
else: |
|
unet_dtype = dtype |
|
|
|
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) |
|
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype) |
|
model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations) |
|
if model_options.get("fp8_optimizations", False): |
|
model_config.optimizations["fp8"] = True |
|
|
|
model = model_config.get_model(new_sd, "") |
|
model = model.to(offload_device) |
|
model.load_model_weights(new_sd, "") |
|
left_over = sd.keys() |
|
if len(left_over) > 0: |
|
logging.info("left over keys in unet: {}".format(left_over)) |
|
return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device) |
|
|
|
|
|
def load_diffusion_model(unet_path, model_options={}): |
|
sd = comfy.utils.load_torch_file(unet_path) |
|
model = load_diffusion_model_state_dict(sd, model_options=model_options) |
|
if model is None: |
|
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path)) |
|
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path)) |
|
return model |
|
|
|
def load_unet(unet_path, dtype=None): |
|
print("WARNING: the load_unet function has been deprecated and will be removed please switch to: load_diffusion_model") |
|
return load_diffusion_model(unet_path, model_options={"dtype": dtype}) |
|
|
|
def load_unet_state_dict(sd, dtype=None): |
|
print("WARNING: the load_unet_state_dict function has been deprecated and will be removed please switch to: load_diffusion_model_state_dict") |
|
return load_diffusion_model_state_dict(sd, model_options={"dtype": dtype}) |
|
|
|
def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None, extra_keys={}): |
|
clip_sd = None |
|
load_models = [model] |
|
if clip is not None: |
|
load_models.append(clip.load_model()) |
|
clip_sd = clip.get_sd() |
|
vae_sd = None |
|
if vae is not None: |
|
vae_sd = vae.get_sd() |
|
|
|
model_management.load_models_gpu(load_models, force_patch_weights=True) |
|
clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None |
|
sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd) |
|
for k in extra_keys: |
|
sd[k] = extra_keys[k] |
|
|
|
for k in sd: |
|
t = sd[k] |
|
if not t.is_contiguous(): |
|
sd[k] = t.contiguous() |
|
|
|
comfy.utils.save_torch_file(sd, output_path, metadata=metadata) |
|
|