|
|
|
import torch |
|
from torchvision.transforms import functional as TF |
|
from PIL import Image, ImageDraw |
|
import numpy as np |
|
from ..utility.utility import pil2tensor |
|
from nodes import MAX_RESOLUTION |
|
|
|
class NormalizedAmplitudeToMask: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"normalized_amp": ("NORMALIZED_AMPLITUDE",), |
|
"width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}), |
|
"height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}), |
|
"frame_offset": ("INT", {"default": 0,"min": -255, "max": 255, "step": 1}), |
|
"location_x": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}), |
|
"location_y": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}), |
|
"size": ("INT", {"default": 128,"min": 8, "max": 4096, "step": 1}), |
|
"shape": ( |
|
[ |
|
'none', |
|
'circle', |
|
'square', |
|
'triangle', |
|
], |
|
{ |
|
"default": 'none' |
|
}), |
|
"color": ( |
|
[ |
|
'white', |
|
'amplitude', |
|
], |
|
{ |
|
"default": 'amplitude' |
|
}), |
|
},} |
|
|
|
CATEGORY = "KJNodes/audio" |
|
RETURN_TYPES = ("MASK",) |
|
FUNCTION = "convert" |
|
DESCRIPTION = """ |
|
Works as a bridge to the AudioScheduler -nodes: |
|
https://github.com/a1lazydog/ComfyUI-AudioScheduler |
|
Creates masks based on the normalized amplitude. |
|
""" |
|
|
|
def convert(self, normalized_amp, width, height, frame_offset, shape, location_x, location_y, size, color): |
|
|
|
normalized_amp = np.clip(normalized_amp, 0.0, 1.0) |
|
|
|
|
|
normalized_amp = np.roll(normalized_amp, frame_offset) |
|
|
|
|
|
out = [] |
|
|
|
for amp in normalized_amp: |
|
|
|
if color == 'amplitude': |
|
grayscale_value = int(amp * 255) |
|
elif color == 'white': |
|
grayscale_value = 255 |
|
|
|
gray_color = (grayscale_value, grayscale_value, grayscale_value) |
|
finalsize = size * amp |
|
|
|
if shape == 'none': |
|
shapeimage = Image.new("RGB", (width, height), gray_color) |
|
else: |
|
shapeimage = Image.new("RGB", (width, height), "black") |
|
|
|
draw = ImageDraw.Draw(shapeimage) |
|
if shape == 'circle' or shape == 'square': |
|
|
|
left_up_point = (location_x - finalsize, location_y - finalsize) |
|
right_down_point = (location_x + finalsize,location_y + finalsize) |
|
two_points = [left_up_point, right_down_point] |
|
|
|
if shape == 'circle': |
|
draw.ellipse(two_points, fill=gray_color) |
|
elif shape == 'square': |
|
draw.rectangle(two_points, fill=gray_color) |
|
|
|
elif shape == 'triangle': |
|
|
|
left_up_point = (location_x - finalsize, location_y + finalsize) |
|
right_down_point = (location_x + finalsize, location_y + finalsize) |
|
top_point = (location_x, location_y) |
|
draw.polygon([top_point, left_up_point, right_down_point], fill=gray_color) |
|
|
|
shapeimage = pil2tensor(shapeimage) |
|
mask = shapeimage[:, :, :, 0] |
|
out.append(mask) |
|
|
|
return (torch.cat(out, dim=0),) |
|
|
|
class NormalizedAmplitudeToFloatList: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"normalized_amp": ("NORMALIZED_AMPLITUDE",), |
|
},} |
|
|
|
CATEGORY = "KJNodes/audio" |
|
RETURN_TYPES = ("FLOAT",) |
|
FUNCTION = "convert" |
|
DESCRIPTION = """ |
|
Works as a bridge to the AudioScheduler -nodes: |
|
https://github.com/a1lazydog/ComfyUI-AudioScheduler |
|
Creates a list of floats from the normalized amplitude. |
|
""" |
|
|
|
def convert(self, normalized_amp): |
|
|
|
normalized_amp = np.clip(normalized_amp, 0.0, 1.0) |
|
return (normalized_amp.tolist(),) |
|
|
|
class OffsetMaskByNormalizedAmplitude: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"normalized_amp": ("NORMALIZED_AMPLITUDE",), |
|
"mask": ("MASK",), |
|
"x": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }), |
|
"y": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }), |
|
"rotate": ("BOOLEAN", { "default": False }), |
|
"angle_multiplier": ("FLOAT", { "default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001, "display": "number" }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MASK",) |
|
RETURN_NAMES = ("mask",) |
|
FUNCTION = "offset" |
|
CATEGORY = "KJNodes/audio" |
|
DESCRIPTION = """ |
|
Works as a bridge to the AudioScheduler -nodes: |
|
https://github.com/a1lazydog/ComfyUI-AudioScheduler |
|
Offsets masks based on the normalized amplitude. |
|
""" |
|
|
|
def offset(self, mask, x, y, angle_multiplier, rotate, normalized_amp): |
|
|
|
|
|
offsetmask = mask.clone() |
|
normalized_amp = np.clip(normalized_amp, 0.0, 1.0) |
|
|
|
batch_size, height, width = mask.shape |
|
|
|
if rotate: |
|
for i in range(batch_size): |
|
rotation_amp = int(normalized_amp[i] * (360 * angle_multiplier)) |
|
rotation_angle = rotation_amp |
|
offsetmask[i] = TF.rotate(offsetmask[i].unsqueeze(0), rotation_angle).squeeze(0) |
|
if x != 0 or y != 0: |
|
for i in range(batch_size): |
|
offset_amp = normalized_amp[i] * 10 |
|
shift_x = min(x*offset_amp, width-1) |
|
shift_y = min(y*offset_amp, height-1) |
|
if shift_x != 0: |
|
offsetmask[i] = torch.roll(offsetmask[i], shifts=int(shift_x), dims=1) |
|
if shift_y != 0: |
|
offsetmask[i] = torch.roll(offsetmask[i], shifts=int(shift_y), dims=0) |
|
|
|
return offsetmask, |
|
|
|
class ImageTransformByNormalizedAmplitude: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"normalized_amp": ("NORMALIZED_AMPLITUDE",), |
|
"zoom_scale": ("FLOAT", { "default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001, "display": "number" }), |
|
"x_offset": ("INT", { "default": 0, "min": (1 -MAX_RESOLUTION), "max": MAX_RESOLUTION, "step": 1, "display": "number" }), |
|
"y_offset": ("INT", { "default": 0, "min": (1 -MAX_RESOLUTION), "max": MAX_RESOLUTION, "step": 1, "display": "number" }), |
|
"cumulative": ("BOOLEAN", { "default": False }), |
|
"image": ("IMAGE",), |
|
}} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "amptransform" |
|
CATEGORY = "KJNodes/audio" |
|
DESCRIPTION = """ |
|
Works as a bridge to the AudioScheduler -nodes: |
|
https://github.com/a1lazydog/ComfyUI-AudioScheduler |
|
Transforms image based on the normalized amplitude. |
|
""" |
|
|
|
def amptransform(self, image, normalized_amp, zoom_scale, cumulative, x_offset, y_offset): |
|
|
|
normalized_amp = np.clip(normalized_amp, 0.0, 1.0) |
|
transformed_images = [] |
|
|
|
|
|
prev_amp = 0.0 |
|
|
|
for i in range(image.shape[0]): |
|
img = image[i] |
|
amp = normalized_amp[i] |
|
|
|
|
|
if cumulative: |
|
prev_amp += amp |
|
amp += prev_amp |
|
|
|
|
|
img = img.permute(2, 0, 1) |
|
|
|
|
|
pil_img = TF.to_pil_image(img) |
|
|
|
|
|
width, height = pil_img.size |
|
crop_size = int(min(width, height) * (1 - amp * zoom_scale)) |
|
crop_size = max(crop_size, 1) |
|
|
|
|
|
left = (width - crop_size) // 2 |
|
top = (height - crop_size) // 2 |
|
right = (width + crop_size) // 2 |
|
bottom = (height + crop_size) // 2 |
|
|
|
|
|
cropped_img = TF.crop(pil_img, top, left, crop_size, crop_size) |
|
resized_img = TF.resize(cropped_img, (height, width)) |
|
|
|
|
|
tensor_img = TF.to_tensor(resized_img) |
|
|
|
|
|
tensor_img = tensor_img.permute(1, 2, 0) |
|
|
|
|
|
offset_amp = amp * 10 |
|
shift_x = min(x_offset * offset_amp, img.shape[1] - 1) |
|
shift_y = min(y_offset * offset_amp, img.shape[0] - 1) |
|
|
|
|
|
if shift_x != 0: |
|
tensor_img = torch.roll(tensor_img, shifts=int(shift_x), dims=1) |
|
if shift_y != 0: |
|
tensor_img = torch.roll(tensor_img, shifts=int(shift_y), dims=0) |
|
|
|
|
|
transformed_images.append(tensor_img) |
|
|
|
|
|
transformed_batch = torch.stack(transformed_images) |
|
|
|
return (transformed_batch,) |