|
import folder_paths |
|
import os |
|
import torch |
|
import torch.nn.functional as F |
|
from comfy.utils import ProgressBar, load_torch_file |
|
import comfy.sample |
|
from nodes import CLIPTextEncode |
|
|
|
script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
folder_paths.add_model_folder_path("intrinsic_loras", os.path.join(script_directory, "intrinsic_loras")) |
|
|
|
class Intrinsic_lora_sampling: |
|
def __init__(self): |
|
self.loaded_lora = None |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "model": ("MODEL",), |
|
"lora_name": (folder_paths.get_filename_list("intrinsic_loras"), ), |
|
"task": ( |
|
[ |
|
'depth map', |
|
'surface normals', |
|
'albedo', |
|
'shading', |
|
], |
|
{ |
|
"default": 'depth map' |
|
}), |
|
"text": ("STRING", {"multiline": True, "default": ""}), |
|
"clip": ("CLIP", ), |
|
"vae": ("VAE", ), |
|
"per_batch": ("INT", {"default": 16, "min": 1, "max": 4096, "step": 1}), |
|
}, |
|
"optional": { |
|
"image": ("IMAGE",), |
|
"optional_latent": ("LATENT",), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "LATENT",) |
|
FUNCTION = "onestepsample" |
|
CATEGORY = "KJNodes" |
|
DESCRIPTION = """ |
|
Sampler to use the intrinsic loras: |
|
https://github.com/duxiaodan/intrinsic-lora |
|
These LoRAs are tiny and thus included |
|
with this node pack. |
|
""" |
|
|
|
def onestepsample(self, model, lora_name, clip, vae, text, task, per_batch, image=None, optional_latent=None): |
|
pbar = ProgressBar(3) |
|
|
|
if optional_latent is None: |
|
image_list = [] |
|
for start_idx in range(0, image.shape[0], per_batch): |
|
sub_pixels = vae.vae_encode_crop_pixels(image[start_idx:start_idx+per_batch]) |
|
image_list.append(vae.encode(sub_pixels[:,:,:,:3])) |
|
sample = torch.cat(image_list, dim=0) |
|
else: |
|
sample = optional_latent["samples"] |
|
noise = torch.zeros(sample.size(), dtype=sample.dtype, layout=sample.layout, device="cpu") |
|
prompt = task + "," + text |
|
positive, = CLIPTextEncode.encode(self, clip, prompt) |
|
negative = positive |
|
|
|
pbar.update(1) |
|
|
|
|
|
class X0_PassThrough(comfy.model_sampling.EPS): |
|
def calculate_denoised(self, sigma, model_output, model_input): |
|
return model_output |
|
def calculate_input(self, sigma, noise): |
|
return noise |
|
sampling_base = comfy.model_sampling.ModelSamplingDiscrete |
|
sampling_type = X0_PassThrough |
|
|
|
class ModelSamplingAdvanced(sampling_base, sampling_type): |
|
pass |
|
model_sampling = ModelSamplingAdvanced(model.model.model_config) |
|
|
|
|
|
model_clone = model.clone() |
|
lora_path = folder_paths.get_full_path("intrinsic_loras", lora_name) |
|
lora = load_torch_file(lora_path, safe_load=True) |
|
self.loaded_lora = (lora_path, lora) |
|
|
|
model_clone_with_lora = comfy.sd.load_lora_for_models(model_clone, None, lora, 1.0, 0)[0] |
|
|
|
model_clone_with_lora.add_object_patch("model_sampling", model_sampling) |
|
|
|
samples = {"samples": comfy.sample.sample(model_clone_with_lora, noise, 1, 1.0, "euler", "simple", positive, negative, sample, |
|
denoise=1.0, disable_noise=True, start_step=0, last_step=1, |
|
force_full_denoise=True, noise_mask=None, callback=None, disable_pbar=True, seed=None)} |
|
pbar.update(1) |
|
|
|
decoded = [] |
|
for start_idx in range(0, samples["samples"].shape[0], per_batch): |
|
decoded.append(vae.decode(samples["samples"][start_idx:start_idx+per_batch])) |
|
image_out = torch.cat(decoded, dim=0) |
|
|
|
pbar.update(1) |
|
|
|
if task == 'depth map': |
|
imax = image_out.max() |
|
imin = image_out.min() |
|
image_out = (image_out-imin)/(imax-imin) |
|
image_out = torch.max(image_out, dim=3, keepdim=True)[0].repeat(1, 1, 1, 3) |
|
elif task == 'surface normals': |
|
image_out = F.normalize(image_out * 2 - 1, dim=3) / 2 + 0.5 |
|
image_out = 1.0 - image_out |
|
else: |
|
image_out = image_out.clamp(-1.,1.) |
|
|
|
return (image_out, samples,) |