Spaces:
ginipick
/
Running on Zero

multimodalart's picture
Squashing commit
4450790 verified
raw
history blame
104 kB
import torch
import numpy as np
from PIL import Image
from typing import Union
import json, re, os, io, time, platform
import re
import importlib
import model_management
import folder_paths
from nodes import MAX_RESOLUTION
from comfy.utils import common_upscale, ProgressBar
script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
folder_paths.add_model_folder_path("kjnodes_fonts", os.path.join(script_directory, "fonts"))
class AnyType(str):
"""A special class that is always equal in not equal comparisons. Credit to pythongosssss"""
def __ne__(self, __value: object) -> bool:
return False
any = AnyType("*")
class BOOLConstant:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"value": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("BOOLEAN",)
RETURN_NAMES = ("value",)
FUNCTION = "get_value"
CATEGORY = "KJNodes/constants"
def get_value(self, value):
return (value,)
class INTConstant:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"value": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
},
}
RETURN_TYPES = ("INT",)
RETURN_NAMES = ("value",)
FUNCTION = "get_value"
CATEGORY = "KJNodes/constants"
def get_value(self, value):
return (value,)
class FloatConstant:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"value": ("FLOAT", {"default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.00001}),
},
}
RETURN_TYPES = ("FLOAT",)
RETURN_NAMES = ("value",)
FUNCTION = "get_value"
CATEGORY = "KJNodes/constants"
def get_value(self, value):
return (value,)
class StringConstant:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"string": ("STRING", {"default": '', "multiline": False}),
}
}
RETURN_TYPES = ("STRING",)
FUNCTION = "passtring"
CATEGORY = "KJNodes/constants"
def passtring(self, string):
return (string, )
class StringConstantMultiline:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"string": ("STRING", {"default": "", "multiline": True}),
"strip_newlines": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("STRING",)
FUNCTION = "stringify"
CATEGORY = "KJNodes/constants"
def stringify(self, string, strip_newlines):
new_string = []
for line in io.StringIO(string):
if not line.strip().startswith("\n") and strip_newlines:
line = line.replace("\n", '')
new_string.append(line)
new_string = "\n".join(new_string)
return (new_string, )
class ScaleBatchPromptSchedule:
RETURN_TYPES = ("STRING",)
FUNCTION = "scaleschedule"
CATEGORY = "KJNodes"
DESCRIPTION = """
Scales a batch schedule from Fizz' nodes BatchPromptSchedule
to a different frame count.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"input_str": ("STRING", {"forceInput": True,"default": "0:(0.0),\n7:(1.0),\n15:(0.0)\n"}),
"old_frame_count": ("INT", {"forceInput": True,"default": 1,"min": 1, "max": 4096, "step": 1}),
"new_frame_count": ("INT", {"forceInput": True,"default": 1,"min": 1, "max": 4096, "step": 1}),
},
}
def scaleschedule(self, old_frame_count, input_str, new_frame_count):
pattern = r'"(\d+)"\s*:\s*"(.*?)"(?:,|\Z)'
frame_strings = dict(re.findall(pattern, input_str))
# Calculate the scaling factor
scaling_factor = (new_frame_count - 1) / (old_frame_count - 1)
# Initialize a dictionary to store the new frame numbers and strings
new_frame_strings = {}
# Iterate over the frame numbers and strings
for old_frame, string in frame_strings.items():
# Calculate the new frame number
new_frame = int(round(int(old_frame) * scaling_factor))
# Store the new frame number and corresponding string
new_frame_strings[new_frame] = string
# Format the output string
output_str = ', '.join([f'"{k}":"{v}"' for k, v in sorted(new_frame_strings.items())])
return (output_str,)
class GetLatentsFromBatchIndexed:
RETURN_TYPES = ("LATENT",)
FUNCTION = "indexedlatentsfrombatch"
CATEGORY = "KJNodes"
DESCRIPTION = """
Selects and returns the latents at the specified indices as an latent batch.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"latents": ("LATENT",),
"indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}),
},
}
def indexedlatentsfrombatch(self, latents, indexes):
samples = latents.copy()
latent_samples = samples["samples"]
# Parse the indexes string into a list of integers
index_list = [int(index.strip()) for index in indexes.split(',')]
# Convert list of indices to a PyTorch tensor
indices_tensor = torch.tensor(index_list, dtype=torch.long)
# Select the latents at the specified indices
chosen_latents = latent_samples[indices_tensor]
samples["samples"] = chosen_latents
return (samples,)
class ConditioningMultiCombine:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"inputcount": ("INT", {"default": 2, "min": 2, "max": 20, "step": 1}),
"operation": (["combine", "concat"], {"default": "combine"}),
"conditioning_1": ("CONDITIONING", ),
"conditioning_2": ("CONDITIONING", ),
},
}
RETURN_TYPES = ("CONDITIONING", "INT")
RETURN_NAMES = ("combined", "inputcount")
FUNCTION = "combine"
CATEGORY = "KJNodes/masking/conditioning"
DESCRIPTION = """
Combines multiple conditioning nodes into one
"""
def combine(self, inputcount, operation, **kwargs):
from nodes import ConditioningCombine
from nodes import ConditioningConcat
cond_combine_node = ConditioningCombine()
cond_concat_node = ConditioningConcat()
cond = kwargs["conditioning_1"]
for c in range(1, inputcount):
new_cond = kwargs[f"conditioning_{c + 1}"]
if operation == "combine":
cond = cond_combine_node.combine(new_cond, cond)[0]
elif operation == "concat":
cond = cond_concat_node.concat(cond, new_cond)[0]
return (cond, inputcount,)
class AppendStringsToList:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"string1": ("STRING", {"default": '', "forceInput": True}),
"string2": ("STRING", {"default": '', "forceInput": True}),
}
}
RETURN_TYPES = ("STRING",)
FUNCTION = "joinstring"
CATEGORY = "KJNodes/constants"
def joinstring(self, string1, string2):
if not isinstance(string1, list):
string1 = [string1]
if not isinstance(string2, list):
string2 = [string2]
joined_string = string1 + string2
return (joined_string, )
class JoinStrings:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"string1": ("STRING", {"default": '', "forceInput": True}),
"string2": ("STRING", {"default": '', "forceInput": True}),
"delimiter": ("STRING", {"default": ' ', "multiline": False}),
}
}
RETURN_TYPES = ("STRING",)
FUNCTION = "joinstring"
CATEGORY = "KJNodes/constants"
def joinstring(self, string1, string2, delimiter):
joined_string = string1 + delimiter + string2
return (joined_string, )
class JoinStringMulti:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
"string_1": ("STRING", {"default": '', "forceInput": True}),
"string_2": ("STRING", {"default": '', "forceInput": True}),
"delimiter": ("STRING", {"default": ' ', "multiline": False}),
"return_list": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("string",)
FUNCTION = "combine"
CATEGORY = "KJNodes"
DESCRIPTION = """
Creates single string, or a list of strings, from
multiple input strings.
You can set how many inputs the node has,
with the **inputcount** and clicking update.
"""
def combine(self, inputcount, delimiter, **kwargs):
string = kwargs["string_1"]
return_list = kwargs["return_list"]
strings = [string] # Initialize a list with the first string
for c in range(1, inputcount):
new_string = kwargs[f"string_{c + 1}"]
if return_list:
strings.append(new_string) # Add new string to the list
else:
string = string + delimiter + new_string
if return_list:
return (strings,) # Return the list of strings
else:
return (string,) # Return the combined string
class CondPassThrough:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
},
"optional": {
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
},
}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING",)
RETURN_NAMES = ("positive", "negative")
FUNCTION = "passthrough"
CATEGORY = "KJNodes/misc"
DESCRIPTION = """
Simply passes through the positive and negative conditioning,
workaround for Set node not allowing bypassed inputs.
"""
def passthrough(self, positive=None, negative=None):
return (positive, negative,)
class ModelPassThrough:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
},
"optional": {
"model": ("MODEL", ),
},
}
RETURN_TYPES = ("MODEL", )
RETURN_NAMES = ("model",)
FUNCTION = "passthrough"
CATEGORY = "KJNodes/misc"
DESCRIPTION = """
Simply passes through the model,
workaround for Set node not allowing bypassed inputs.
"""
def passthrough(self, model=None):
return (model,)
def append_helper(t, mask, c, set_area_to_bounds, strength):
n = [t[0], t[1].copy()]
_, h, w = mask.shape
n[1]['mask'] = mask
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c.append(n)
class ConditioningSetMaskAndCombine:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"positive_1": ("CONDITIONING", ),
"negative_1": ("CONDITIONING", ),
"positive_2": ("CONDITIONING", ),
"negative_2": ("CONDITIONING", ),
"mask_1": ("MASK", ),
"mask_2": ("MASK", ),
"mask_1_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
RETURN_NAMES = ("combined_positive", "combined_negative",)
FUNCTION = "append"
CATEGORY = "KJNodes/masking/conditioning"
DESCRIPTION = """
Bundles multiple conditioning mask and combine nodes into one,functionality is identical to ComfyUI native nodes
"""
def append(self, positive_1, negative_1, positive_2, negative_2, mask_1, mask_2, set_cond_area, mask_1_strength, mask_2_strength):
c = []
c2 = []
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask_1.shape) < 3:
mask_1 = mask_1.unsqueeze(0)
if len(mask_2.shape) < 3:
mask_2 = mask_2.unsqueeze(0)
for t in positive_1:
append_helper(t, mask_1, c, set_area_to_bounds, mask_1_strength)
for t in positive_2:
append_helper(t, mask_2, c, set_area_to_bounds, mask_2_strength)
for t in negative_1:
append_helper(t, mask_1, c2, set_area_to_bounds, mask_1_strength)
for t in negative_2:
append_helper(t, mask_2, c2, set_area_to_bounds, mask_2_strength)
return (c, c2)
class ConditioningSetMaskAndCombine3:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"positive_1": ("CONDITIONING", ),
"negative_1": ("CONDITIONING", ),
"positive_2": ("CONDITIONING", ),
"negative_2": ("CONDITIONING", ),
"positive_3": ("CONDITIONING", ),
"negative_3": ("CONDITIONING", ),
"mask_1": ("MASK", ),
"mask_2": ("MASK", ),
"mask_3": ("MASK", ),
"mask_1_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_3_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
RETURN_NAMES = ("combined_positive", "combined_negative",)
FUNCTION = "append"
CATEGORY = "KJNodes/masking/conditioning"
DESCRIPTION = """
Bundles multiple conditioning mask and combine nodes into one,functionality is identical to ComfyUI native nodes
"""
def append(self, positive_1, negative_1, positive_2, positive_3, negative_2, negative_3, mask_1, mask_2, mask_3, set_cond_area, mask_1_strength, mask_2_strength, mask_3_strength):
c = []
c2 = []
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask_1.shape) < 3:
mask_1 = mask_1.unsqueeze(0)
if len(mask_2.shape) < 3:
mask_2 = mask_2.unsqueeze(0)
if len(mask_3.shape) < 3:
mask_3 = mask_3.unsqueeze(0)
for t in positive_1:
append_helper(t, mask_1, c, set_area_to_bounds, mask_1_strength)
for t in positive_2:
append_helper(t, mask_2, c, set_area_to_bounds, mask_2_strength)
for t in positive_3:
append_helper(t, mask_3, c, set_area_to_bounds, mask_3_strength)
for t in negative_1:
append_helper(t, mask_1, c2, set_area_to_bounds, mask_1_strength)
for t in negative_2:
append_helper(t, mask_2, c2, set_area_to_bounds, mask_2_strength)
for t in negative_3:
append_helper(t, mask_3, c2, set_area_to_bounds, mask_3_strength)
return (c, c2)
class ConditioningSetMaskAndCombine4:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"positive_1": ("CONDITIONING", ),
"negative_1": ("CONDITIONING", ),
"positive_2": ("CONDITIONING", ),
"negative_2": ("CONDITIONING", ),
"positive_3": ("CONDITIONING", ),
"negative_3": ("CONDITIONING", ),
"positive_4": ("CONDITIONING", ),
"negative_4": ("CONDITIONING", ),
"mask_1": ("MASK", ),
"mask_2": ("MASK", ),
"mask_3": ("MASK", ),
"mask_4": ("MASK", ),
"mask_1_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_3_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_4_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
RETURN_NAMES = ("combined_positive", "combined_negative",)
FUNCTION = "append"
CATEGORY = "KJNodes/masking/conditioning"
DESCRIPTION = """
Bundles multiple conditioning mask and combine nodes into one,functionality is identical to ComfyUI native nodes
"""
def append(self, positive_1, negative_1, positive_2, positive_3, positive_4, negative_2, negative_3, negative_4, mask_1, mask_2, mask_3, mask_4, set_cond_area, mask_1_strength, mask_2_strength, mask_3_strength, mask_4_strength):
c = []
c2 = []
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask_1.shape) < 3:
mask_1 = mask_1.unsqueeze(0)
if len(mask_2.shape) < 3:
mask_2 = mask_2.unsqueeze(0)
if len(mask_3.shape) < 3:
mask_3 = mask_3.unsqueeze(0)
if len(mask_4.shape) < 3:
mask_4 = mask_4.unsqueeze(0)
for t in positive_1:
append_helper(t, mask_1, c, set_area_to_bounds, mask_1_strength)
for t in positive_2:
append_helper(t, mask_2, c, set_area_to_bounds, mask_2_strength)
for t in positive_3:
append_helper(t, mask_3, c, set_area_to_bounds, mask_3_strength)
for t in positive_4:
append_helper(t, mask_4, c, set_area_to_bounds, mask_4_strength)
for t in negative_1:
append_helper(t, mask_1, c2, set_area_to_bounds, mask_1_strength)
for t in negative_2:
append_helper(t, mask_2, c2, set_area_to_bounds, mask_2_strength)
for t in negative_3:
append_helper(t, mask_3, c2, set_area_to_bounds, mask_3_strength)
for t in negative_4:
append_helper(t, mask_4, c2, set_area_to_bounds, mask_4_strength)
return (c, c2)
class ConditioningSetMaskAndCombine5:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"positive_1": ("CONDITIONING", ),
"negative_1": ("CONDITIONING", ),
"positive_2": ("CONDITIONING", ),
"negative_2": ("CONDITIONING", ),
"positive_3": ("CONDITIONING", ),
"negative_3": ("CONDITIONING", ),
"positive_4": ("CONDITIONING", ),
"negative_4": ("CONDITIONING", ),
"positive_5": ("CONDITIONING", ),
"negative_5": ("CONDITIONING", ),
"mask_1": ("MASK", ),
"mask_2": ("MASK", ),
"mask_3": ("MASK", ),
"mask_4": ("MASK", ),
"mask_5": ("MASK", ),
"mask_1_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_3_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_4_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"mask_5_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
RETURN_NAMES = ("combined_positive", "combined_negative",)
FUNCTION = "append"
CATEGORY = "KJNodes/masking/conditioning"
DESCRIPTION = """
Bundles multiple conditioning mask and combine nodes into one,functionality is identical to ComfyUI native nodes
"""
def append(self, positive_1, negative_1, positive_2, positive_3, positive_4, positive_5, negative_2, negative_3, negative_4, negative_5, mask_1, mask_2, mask_3, mask_4, mask_5, set_cond_area, mask_1_strength, mask_2_strength, mask_3_strength, mask_4_strength, mask_5_strength):
c = []
c2 = []
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask_1.shape) < 3:
mask_1 = mask_1.unsqueeze(0)
if len(mask_2.shape) < 3:
mask_2 = mask_2.unsqueeze(0)
if len(mask_3.shape) < 3:
mask_3 = mask_3.unsqueeze(0)
if len(mask_4.shape) < 3:
mask_4 = mask_4.unsqueeze(0)
if len(mask_5.shape) < 3:
mask_5 = mask_5.unsqueeze(0)
for t in positive_1:
append_helper(t, mask_1, c, set_area_to_bounds, mask_1_strength)
for t in positive_2:
append_helper(t, mask_2, c, set_area_to_bounds, mask_2_strength)
for t in positive_3:
append_helper(t, mask_3, c, set_area_to_bounds, mask_3_strength)
for t in positive_4:
append_helper(t, mask_4, c, set_area_to_bounds, mask_4_strength)
for t in positive_5:
append_helper(t, mask_5, c, set_area_to_bounds, mask_5_strength)
for t in negative_1:
append_helper(t, mask_1, c2, set_area_to_bounds, mask_1_strength)
for t in negative_2:
append_helper(t, mask_2, c2, set_area_to_bounds, mask_2_strength)
for t in negative_3:
append_helper(t, mask_3, c2, set_area_to_bounds, mask_3_strength)
for t in negative_4:
append_helper(t, mask_4, c2, set_area_to_bounds, mask_4_strength)
for t in negative_5:
append_helper(t, mask_5, c2, set_area_to_bounds, mask_5_strength)
return (c, c2)
class VRAM_Debug:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"empty_cache": ("BOOLEAN", {"default": True}),
"gc_collect": ("BOOLEAN", {"default": True}),
"unload_all_models": ("BOOLEAN", {"default": False}),
},
"optional": {
"any_input": (any, {}),
"image_pass": ("IMAGE",),
"model_pass": ("MODEL",),
}
}
RETURN_TYPES = (any, "IMAGE","MODEL","INT", "INT",)
RETURN_NAMES = ("any_output", "image_pass", "model_pass", "freemem_before", "freemem_after")
FUNCTION = "VRAMdebug"
CATEGORY = "KJNodes/misc"
DESCRIPTION = """
Returns the inputs unchanged, they are only used as triggers,
and performs comfy model management functions and garbage collection,
reports free VRAM before and after the operations.
"""
def VRAMdebug(self, gc_collect, empty_cache, unload_all_models, image_pass=None, model_pass=None, any_input=None):
freemem_before = model_management.get_free_memory()
print("VRAMdebug: free memory before: ", f"{freemem_before:,.0f}")
if empty_cache:
model_management.soft_empty_cache()
if unload_all_models:
model_management.unload_all_models()
if gc_collect:
import gc
gc.collect()
freemem_after = model_management.get_free_memory()
print("VRAMdebug: free memory after: ", f"{freemem_after:,.0f}")
print("VRAMdebug: freed memory: ", f"{freemem_after - freemem_before:,.0f}")
return {"ui": {
"text": [f"{freemem_before:,.0f}x{freemem_after:,.0f}"]},
"result": (any_input, image_pass, model_pass, freemem_before, freemem_after)
}
class SomethingToString:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"input": (any, {}),
},
"optional": {
"prefix": ("STRING", {"default": ""}),
"suffix": ("STRING", {"default": ""}),
}
}
RETURN_TYPES = ("STRING",)
FUNCTION = "stringify"
CATEGORY = "KJNodes/text"
DESCRIPTION = """
Converts any type to a string.
"""
def stringify(self, input, prefix="", suffix=""):
if isinstance(input, (int, float, bool)):
stringified = str(input)
elif isinstance(input, list):
stringified = ', '.join(str(item) for item in input)
else:
return
if prefix: # Check if prefix is not empty
stringified = prefix + stringified # Add the prefix
if suffix: # Check if suffix is not empty
stringified = stringified + suffix # Add the suffix
return (stringified,)
class Sleep:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"input": (any, {}),
"minutes": ("INT", {"default": 0, "min": 0, "max": 1439}),
"seconds": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 59.99, "step": 0.01}),
},
}
RETURN_TYPES = (any,)
FUNCTION = "sleepdelay"
CATEGORY = "KJNodes/misc"
DESCRIPTION = """
Delays the execution for the input amount of time.
"""
def sleepdelay(self, input, minutes, seconds):
total_seconds = minutes * 60 + seconds
time.sleep(total_seconds)
return input,
class EmptyLatentImagePresets:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"dimensions": (
[
'512 x 512 (1:1)',
'768 x 512 (1.5:1)',
'960 x 512 (1.875:1)',
'1024 x 512 (2:1)',
'1024 x 576 (1.778:1)',
'1536 x 640 (2.4:1)',
'1344 x 768 (1.75:1)',
'1216 x 832 (1.46:1)',
'1152 x 896 (1.286:1)',
'1024 x 1024 (1:1)',
],
{
"default": '512 x 512 (1:1)'
}),
"invert": ("BOOLEAN", {"default": False}),
"batch_size": ("INT", {
"default": 1,
"min": 1,
"max": 4096
}),
},
}
RETURN_TYPES = ("LATENT", "INT", "INT")
RETURN_NAMES = ("Latent", "Width", "Height")
FUNCTION = "generate"
CATEGORY = "KJNodes"
def generate(self, dimensions, invert, batch_size):
from nodes import EmptyLatentImage
result = [x.strip() for x in dimensions.split('x')]
# Remove the aspect ratio part
result[0] = result[0].split('(')[0].strip()
result[1] = result[1].split('(')[0].strip()
if invert:
width = int(result[1].split(' ')[0])
height = int(result[0])
else:
width = int(result[0])
height = int(result[1].split(' ')[0])
latent = EmptyLatentImage().generate(width, height, batch_size)[0]
return (latent, int(width), int(height),)
class EmptyLatentImageCustomPresets:
@classmethod
def INPUT_TYPES(cls):
try:
with open(os.path.join(script_directory, 'custom_dimensions.json')) as f:
dimensions_dict = json.load(f)
except FileNotFoundError:
dimensions_dict = []
return {
"required": {
"dimensions": (
[f"{d['label']} - {d['value']}" for d in dimensions_dict],
),
"invert": ("BOOLEAN", {"default": False}),
"batch_size": ("INT", {
"default": 1,
"min": 1,
"max": 4096
}),
},
}
RETURN_TYPES = ("LATENT", "INT", "INT")
RETURN_NAMES = ("Latent", "Width", "Height")
FUNCTION = "generate"
CATEGORY = "KJNodes"
DESCRIPTION = """
Generates an empty latent image with the specified dimensions.
The choices are loaded from 'custom_dimensions.json' in the nodes folder.
"""
def generate(self, dimensions, invert, batch_size):
from nodes import EmptyLatentImage
# Split the string into label and value
label, value = dimensions.split(' - ')
# Split the value into width and height
width, height = [x.strip() for x in value.split('x')]
if invert:
width, height = height, width
latent = EmptyLatentImage().generate(int(width), int(height), batch_size)[0]
return (latent, int(width), int(height),)
class WidgetToString:
@classmethod
def IS_CHANGED(cls, **kwargs):
return float("NaN")
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"id": ("INT", {"default": 0}),
"widget_name": ("STRING", {"multiline": False}),
"return_all": ("BOOLEAN", {"default": False}),
},
"optional": {
"any_input": (any, {}),
"node_title": ("STRING", {"multiline": False}),
},
"hidden": {"extra_pnginfo": "EXTRA_PNGINFO",
"prompt": "PROMPT",
"unique_id": "UNIQUE_ID",},
}
RETURN_TYPES = ("STRING", )
FUNCTION = "get_widget_value"
CATEGORY = "KJNodes/text"
DESCRIPTION = """
Selects a node and it's specified widget and outputs the value as a string.
If no node id or title is provided it will use the 'any_input' link and use that node.
To see node id's, enable node id display from Manager badge menu.
Alternatively you can search with the node title. Node titles ONLY exist if they
are manually edited!
The 'any_input' is required for making sure the node you want the value from exists in the workflow.
"""
def get_widget_value(self, id, widget_name, extra_pnginfo, prompt, unique_id, return_all=False, any_input=None, node_title=""):
workflow = extra_pnginfo["workflow"]
#print(json.dumps(workflow, indent=4))
results = []
node_id = None # Initialize node_id to handle cases where no match is found
link_id = None
link_to_node_map = {}
for node in workflow["nodes"]:
if node_title:
if "title" in node:
if node["title"] == node_title:
node_id = node["id"]
break
else:
print("Node title not found.")
elif id != 0:
if node["id"] == id:
node_id = id
break
elif any_input is not None:
if node["type"] == "WidgetToString" and node["id"] == int(unique_id) and not link_id:
for node_input in node["inputs"]:
if node_input["name"] == "any_input":
link_id = node_input["link"]
# Construct a map of links to node IDs for future reference
node_outputs = node.get("outputs", None)
if not node_outputs:
continue
for output in node_outputs:
node_links = output.get("links", None)
if not node_links:
continue
for link in node_links:
link_to_node_map[link] = node["id"]
if link_id and link == link_id:
break
if link_id:
node_id = link_to_node_map.get(link_id, None)
if node_id is None:
raise ValueError("No matching node found for the given title or id")
values = prompt[str(node_id)]
if "inputs" in values:
if return_all:
results.append(', '.join(f'{k}: {str(v)}' for k, v in values["inputs"].items()))
elif widget_name in values["inputs"]:
v = str(values["inputs"][widget_name]) # Convert to string here
return (v, )
else:
raise NameError(f"Widget not found: {node_id}.{widget_name}")
if not results:
raise NameError(f"Node not found: {node_id}")
return (', '.join(results).strip(', '), )
class DummyOut:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"any_input": (any, {}),
}
}
RETURN_TYPES = (any,)
FUNCTION = "dummy"
CATEGORY = "KJNodes/misc"
OUTPUT_NODE = True
DESCRIPTION = """
Does nothing, used to trigger generic workflow output.
A way to get previews in the UI without saving anything to disk.
"""
def dummy(self, any_input):
return (any_input,)
class FlipSigmasAdjusted:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"sigmas": ("SIGMAS", ),
"divide_by_last_sigma": ("BOOLEAN", {"default": False}),
"divide_by": ("FLOAT", {"default": 1,"min": 1, "max": 255, "step": 0.01}),
"offset_by": ("INT", {"default": 1,"min": -100, "max": 100, "step": 1}),
}
}
RETURN_TYPES = ("SIGMAS", "STRING",)
RETURN_NAMES = ("SIGMAS", "sigmas_string",)
CATEGORY = "KJNodes/noise"
FUNCTION = "get_sigmas_adjusted"
def get_sigmas_adjusted(self, sigmas, divide_by_last_sigma, divide_by, offset_by):
sigmas = sigmas.flip(0)
if sigmas[0] == 0:
sigmas[0] = 0.0001
adjusted_sigmas = sigmas.clone()
#offset sigma
for i in range(1, len(sigmas)):
offset_index = i - offset_by
if 0 <= offset_index < len(sigmas):
adjusted_sigmas[i] = sigmas[offset_index]
else:
adjusted_sigmas[i] = 0.0001
if adjusted_sigmas[0] == 0:
adjusted_sigmas[0] = 0.0001
if divide_by_last_sigma:
adjusted_sigmas = adjusted_sigmas / adjusted_sigmas[-1]
sigma_np_array = adjusted_sigmas.numpy()
array_string = np.array2string(sigma_np_array, precision=2, separator=', ', threshold=np.inf)
adjusted_sigmas = adjusted_sigmas / divide_by
return (adjusted_sigmas, array_string,)
class CustomSigmas:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"sigmas_string" :("STRING", {"default": "14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029","multiline": True}),
"interpolate_to_steps": ("INT", {"default": 10,"min": 0, "max": 255, "step": 1}),
}
}
RETURN_TYPES = ("SIGMAS",)
RETURN_NAMES = ("SIGMAS",)
CATEGORY = "KJNodes/noise"
FUNCTION = "customsigmas"
DESCRIPTION = """
Creates a sigmas tensor from a string of comma separated values.
Examples:
Nvidia's optimized AYS 10 step schedule for SD 1.5:
14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029
SDXL:
14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029
SVD:
700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002
"""
def customsigmas(self, sigmas_string, interpolate_to_steps):
sigmas_list = sigmas_string.split(', ')
sigmas_float_list = [float(sigma) for sigma in sigmas_list]
sigmas_tensor = torch.FloatTensor(sigmas_float_list)
if len(sigmas_tensor) != interpolate_to_steps + 1:
sigmas_tensor = self.loglinear_interp(sigmas_tensor, interpolate_to_steps + 1)
sigmas_tensor[-1] = 0
return (sigmas_tensor.float(),)
def loglinear_interp(self, t_steps, num_steps):
"""
Performs log-linear interpolation of a given array of decreasing numbers.
"""
t_steps_np = t_steps.numpy()
xs = np.linspace(0, 1, len(t_steps_np))
ys = np.log(t_steps_np[::-1])
new_xs = np.linspace(0, 1, num_steps)
new_ys = np.interp(new_xs, xs, ys)
interped_ys = np.exp(new_ys)[::-1].copy()
interped_ys_tensor = torch.tensor(interped_ys)
return interped_ys_tensor
class InjectNoiseToLatent:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"latents":("LATENT",),
"strength": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 200.0, "step": 0.0001}),
"noise": ("LATENT",),
"normalize": ("BOOLEAN", {"default": False}),
"average": ("BOOLEAN", {"default": False}),
},
"optional":{
"mask": ("MASK", ),
"mix_randn_amount": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.001}),
"seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}),
}
}
RETURN_TYPES = ("LATENT",)
FUNCTION = "injectnoise"
CATEGORY = "KJNodes/noise"
def injectnoise(self, latents, strength, noise, normalize, average, mix_randn_amount=0, seed=None, mask=None):
samples = latents.copy()
if latents["samples"].shape != noise["samples"].shape:
raise ValueError("InjectNoiseToLatent: Latent and noise must have the same shape")
if average:
noised = (samples["samples"].clone() + noise["samples"].clone()) / 2
else:
noised = samples["samples"].clone() + noise["samples"].clone() * strength
if normalize:
noised = noised / noised.std()
if mask is not None:
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(noised.shape[2], noised.shape[3]), mode="bilinear")
mask = mask.expand((-1,noised.shape[1],-1,-1))
if mask.shape[0] < noised.shape[0]:
mask = mask.repeat((noised.shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:noised.shape[0]]
noised = mask * noised + (1-mask) * latents["samples"]
if mix_randn_amount > 0:
if seed is not None:
generator = torch.manual_seed(seed)
rand_noise = torch.randn(noised.size(), dtype=noised.dtype, layout=noised.layout, generator=generator, device="cpu")
noised = noised + (mix_randn_amount * rand_noise)
samples["samples"] = noised
return (samples,)
class SoundReactive:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"sound_level": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 99999, "step": 0.01}),
"start_range_hz": ("INT", {"default": 150, "min": 0, "max": 9999, "step": 1}),
"end_range_hz": ("INT", {"default": 2000, "min": 0, "max": 9999, "step": 1}),
"multiplier": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 99999, "step": 0.01}),
"smoothing_factor": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"normalize": ("BOOLEAN", {"default": False}),
},
}
RETURN_TYPES = ("FLOAT","INT",)
RETURN_NAMES =("sound_level", "sound_level_int",)
FUNCTION = "react"
CATEGORY = "KJNodes/audio"
DESCRIPTION = """
Reacts to the sound level of the input.
Uses your browsers sound input options and requires.
Meant to be used with realtime diffusion with autoqueue.
"""
def react(self, sound_level, start_range_hz, end_range_hz, smoothing_factor, multiplier, normalize):
sound_level *= multiplier
if normalize:
sound_level /= 255
sound_level_int = int(sound_level)
return (sound_level, sound_level_int, )
class GenerateNoise:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}),
"multiplier": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 4096, "step": 0.01}),
"constant_batch_noise": ("BOOLEAN", {"default": False}),
"normalize": ("BOOLEAN", {"default": False}),
},
"optional": {
"model": ("MODEL", ),
"sigmas": ("SIGMAS", ),
"latent_channels": (
[ '4',
'16',
],
),
}
}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generatenoise"
CATEGORY = "KJNodes/noise"
DESCRIPTION = """
Generates noise for injection or to be used as empty latents on samplers with add_noise off.
"""
def generatenoise(self, batch_size, width, height, seed, multiplier, constant_batch_noise, normalize, sigmas=None, model=None, latent_channels=4):
generator = torch.manual_seed(seed)
noise = torch.randn([batch_size, int(latent_channels), height // 8, width // 8], dtype=torch.float32, layout=torch.strided, generator=generator, device="cpu")
if sigmas is not None:
sigma = sigmas[0] - sigmas[-1]
sigma /= model.model.latent_format.scale_factor
noise *= sigma
noise *=multiplier
if normalize:
noise = noise / noise.std()
if constant_batch_noise:
noise = noise[0].repeat(batch_size, 1, 1, 1)
return ({"samples":noise}, )
def camera_embeddings(elevation, azimuth):
elevation = torch.as_tensor([elevation])
azimuth = torch.as_tensor([azimuth])
embeddings = torch.stack(
[
torch.deg2rad(
(90 - elevation) - (90)
), # Zero123 polar is 90-elevation
torch.sin(torch.deg2rad(azimuth)),
torch.cos(torch.deg2rad(azimuth)),
torch.deg2rad(
90 - torch.full_like(elevation, 0)
),
], dim=-1).unsqueeze(1)
return embeddings
def interpolate_angle(start, end, fraction):
# Calculate the difference in angles and adjust for wraparound if necessary
diff = (end - start + 540) % 360 - 180
# Apply fraction to the difference
interpolated = start + fraction * diff
# Normalize the result to be within the range of -180 to 180
return (interpolated + 180) % 360 - 180
class StableZero123_BatchSchedule:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_vision": ("CLIP_VISION",),
"init_image": ("IMAGE",),
"vae": ("VAE",),
"width": ("INT", {"default": 256, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 256, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out"],),
"azimuth_points_string": ("STRING", {"default": "0:(0.0),\n7:(1.0),\n15:(0.0)\n", "multiline": True}),
"elevation_points_string": ("STRING", {"default": "0:(0.0),\n7:(0.0),\n15:(0.0)\n", "multiline": True}),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "KJNodes/experimental"
def encode(self, clip_vision, init_image, vae, width, height, batch_size, azimuth_points_string, elevation_points_string, interpolation):
output = clip_vision.encode_image(init_image)
pooled = output.image_embeds.unsqueeze(0)
pixels = common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
encode_pixels = pixels[:,:,:,:3]
t = vae.encode(encode_pixels)
def ease_in(t):
return t * t
def ease_out(t):
return 1 - (1 - t) * (1 - t)
def ease_in_out(t):
return 3 * t * t - 2 * t * t * t
# Parse the azimuth input string into a list of tuples
azimuth_points = []
azimuth_points_string = azimuth_points_string.rstrip(',\n')
for point_str in azimuth_points_string.split(','):
frame_str, azimuth_str = point_str.split(':')
frame = int(frame_str.strip())
azimuth = float(azimuth_str.strip()[1:-1])
azimuth_points.append((frame, azimuth))
# Sort the points by frame number
azimuth_points.sort(key=lambda x: x[0])
# Parse the elevation input string into a list of tuples
elevation_points = []
elevation_points_string = elevation_points_string.rstrip(',\n')
for point_str in elevation_points_string.split(','):
frame_str, elevation_str = point_str.split(':')
frame = int(frame_str.strip())
elevation_val = float(elevation_str.strip()[1:-1])
elevation_points.append((frame, elevation_val))
# Sort the points by frame number
elevation_points.sort(key=lambda x: x[0])
# Index of the next point to interpolate towards
next_point = 1
next_elevation_point = 1
positive_cond_out = []
positive_pooled_out = []
negative_cond_out = []
negative_pooled_out = []
#azimuth interpolation
for i in range(batch_size):
# Find the interpolated azimuth for the current frame
while next_point < len(azimuth_points) and i >= azimuth_points[next_point][0]:
next_point += 1
# If next_point is equal to the length of points, we've gone past the last point
if next_point == len(azimuth_points):
next_point -= 1 # Set next_point to the last index of points
prev_point = max(next_point - 1, 0) # Ensure prev_point is not less than 0
# Calculate fraction
if azimuth_points[next_point][0] != azimuth_points[prev_point][0]: # Prevent division by zero
fraction = (i - azimuth_points[prev_point][0]) / (azimuth_points[next_point][0] - azimuth_points[prev_point][0])
if interpolation == "ease_in":
fraction = ease_in(fraction)
elif interpolation == "ease_out":
fraction = ease_out(fraction)
elif interpolation == "ease_in_out":
fraction = ease_in_out(fraction)
# Use the new interpolate_angle function
interpolated_azimuth = interpolate_angle(azimuth_points[prev_point][1], azimuth_points[next_point][1], fraction)
else:
interpolated_azimuth = azimuth_points[prev_point][1]
# Interpolate the elevation
next_elevation_point = 1
while next_elevation_point < len(elevation_points) and i >= elevation_points[next_elevation_point][0]:
next_elevation_point += 1
if next_elevation_point == len(elevation_points):
next_elevation_point -= 1
prev_elevation_point = max(next_elevation_point - 1, 0)
if elevation_points[next_elevation_point][0] != elevation_points[prev_elevation_point][0]:
fraction = (i - elevation_points[prev_elevation_point][0]) / (elevation_points[next_elevation_point][0] - elevation_points[prev_elevation_point][0])
if interpolation == "ease_in":
fraction = ease_in(fraction)
elif interpolation == "ease_out":
fraction = ease_out(fraction)
elif interpolation == "ease_in_out":
fraction = ease_in_out(fraction)
interpolated_elevation = interpolate_angle(elevation_points[prev_elevation_point][1], elevation_points[next_elevation_point][1], fraction)
else:
interpolated_elevation = elevation_points[prev_elevation_point][1]
cam_embeds = camera_embeddings(interpolated_elevation, interpolated_azimuth)
cond = torch.cat([pooled, cam_embeds.repeat((pooled.shape[0], 1, 1))], dim=-1)
positive_pooled_out.append(t)
positive_cond_out.append(cond)
negative_pooled_out.append(torch.zeros_like(t))
negative_cond_out.append(torch.zeros_like(pooled))
# Concatenate the conditions and pooled outputs
final_positive_cond = torch.cat(positive_cond_out, dim=0)
final_positive_pooled = torch.cat(positive_pooled_out, dim=0)
final_negative_cond = torch.cat(negative_cond_out, dim=0)
final_negative_pooled = torch.cat(negative_pooled_out, dim=0)
# Structure the final output
final_positive = [[final_positive_cond, {"concat_latent_image": final_positive_pooled}]]
final_negative = [[final_negative_cond, {"concat_latent_image": final_negative_pooled}]]
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
return (final_positive, final_negative, {"samples": latent})
def linear_interpolate(start, end, fraction):
return start + (end - start) * fraction
class SV3D_BatchSchedule:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_vision": ("CLIP_VISION",),
"init_image": ("IMAGE",),
"vae": ("VAE",),
"width": ("INT", {"default": 576, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 576, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 21, "min": 1, "max": 4096}),
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out"],),
"azimuth_points_string": ("STRING", {"default": "0:(0.0),\n9:(180.0),\n20:(360.0)\n", "multiline": True}),
"elevation_points_string": ("STRING", {"default": "0:(0.0),\n9:(0.0),\n20:(0.0)\n", "multiline": True}),
}}
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
RETURN_NAMES = ("positive", "negative", "latent")
FUNCTION = "encode"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = """
Allow scheduling of the azimuth and elevation conditions for SV3D.
Note that SV3D is still a video model and the schedule needs to always go forward
https://huggingface.co/stabilityai/sv3d
"""
def encode(self, clip_vision, init_image, vae, width, height, batch_size, azimuth_points_string, elevation_points_string, interpolation):
output = clip_vision.encode_image(init_image)
pooled = output.image_embeds.unsqueeze(0)
pixels = common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
encode_pixels = pixels[:,:,:,:3]
t = vae.encode(encode_pixels)
def ease_in(t):
return t * t
def ease_out(t):
return 1 - (1 - t) * (1 - t)
def ease_in_out(t):
return 3 * t * t - 2 * t * t * t
# Parse the azimuth input string into a list of tuples
azimuth_points = []
azimuth_points_string = azimuth_points_string.rstrip(',\n')
for point_str in azimuth_points_string.split(','):
frame_str, azimuth_str = point_str.split(':')
frame = int(frame_str.strip())
azimuth = float(azimuth_str.strip()[1:-1])
azimuth_points.append((frame, azimuth))
# Sort the points by frame number
azimuth_points.sort(key=lambda x: x[0])
# Parse the elevation input string into a list of tuples
elevation_points = []
elevation_points_string = elevation_points_string.rstrip(',\n')
for point_str in elevation_points_string.split(','):
frame_str, elevation_str = point_str.split(':')
frame = int(frame_str.strip())
elevation_val = float(elevation_str.strip()[1:-1])
elevation_points.append((frame, elevation_val))
# Sort the points by frame number
elevation_points.sort(key=lambda x: x[0])
# Index of the next point to interpolate towards
next_point = 1
next_elevation_point = 1
elevations = []
azimuths = []
# For azimuth interpolation
for i in range(batch_size):
# Find the interpolated azimuth for the current frame
while next_point < len(azimuth_points) and i >= azimuth_points[next_point][0]:
next_point += 1
if next_point == len(azimuth_points):
next_point -= 1
prev_point = max(next_point - 1, 0)
if azimuth_points[next_point][0] != azimuth_points[prev_point][0]:
fraction = (i - azimuth_points[prev_point][0]) / (azimuth_points[next_point][0] - azimuth_points[prev_point][0])
# Apply the ease function to the fraction
if interpolation == "ease_in":
fraction = ease_in(fraction)
elif interpolation == "ease_out":
fraction = ease_out(fraction)
elif interpolation == "ease_in_out":
fraction = ease_in_out(fraction)
interpolated_azimuth = linear_interpolate(azimuth_points[prev_point][1], azimuth_points[next_point][1], fraction)
else:
interpolated_azimuth = azimuth_points[prev_point][1]
# Interpolate the elevation
next_elevation_point = 1
while next_elevation_point < len(elevation_points) and i >= elevation_points[next_elevation_point][0]:
next_elevation_point += 1
if next_elevation_point == len(elevation_points):
next_elevation_point -= 1
prev_elevation_point = max(next_elevation_point - 1, 0)
if elevation_points[next_elevation_point][0] != elevation_points[prev_elevation_point][0]:
fraction = (i - elevation_points[prev_elevation_point][0]) / (elevation_points[next_elevation_point][0] - elevation_points[prev_elevation_point][0])
# Apply the ease function to the fraction
if interpolation == "ease_in":
fraction = ease_in(fraction)
elif interpolation == "ease_out":
fraction = ease_out(fraction)
elif interpolation == "ease_in_out":
fraction = ease_in_out(fraction)
interpolated_elevation = linear_interpolate(elevation_points[prev_elevation_point][1], elevation_points[next_elevation_point][1], fraction)
else:
interpolated_elevation = elevation_points[prev_elevation_point][1]
azimuths.append(interpolated_azimuth)
elevations.append(interpolated_elevation)
#print("azimuths", azimuths)
#print("elevations", elevations)
# Structure the final output
final_positive = [[pooled, {"concat_latent_image": t, "elevation": elevations, "azimuth": azimuths}]]
final_negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t),"elevation": elevations, "azimuth": azimuths}]]
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
return (final_positive, final_negative, {"samples": latent})
class LoadResAdapterNormalization:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"resadapter_path": (folder_paths.get_filename_list("checkpoints"), )
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "load_res_adapter"
CATEGORY = "KJNodes/experimental"
def load_res_adapter(self, model, resadapter_path):
print("ResAdapter: Checking ResAdapter path")
resadapter_full_path = folder_paths.get_full_path("checkpoints", resadapter_path)
if not os.path.exists(resadapter_full_path):
raise Exception("Invalid model path")
else:
print("ResAdapter: Loading ResAdapter normalization weights")
from comfy.utils import load_torch_file
prefix_to_remove = 'diffusion_model.'
model_clone = model.clone()
norm_state_dict = load_torch_file(resadapter_full_path)
new_values = {key[len(prefix_to_remove):]: value for key, value in norm_state_dict.items() if key.startswith(prefix_to_remove)}
print("ResAdapter: Attempting to add patches with ResAdapter weights")
try:
for key in model.model.diffusion_model.state_dict().keys():
if key in new_values:
original_tensor = model.model.diffusion_model.state_dict()[key]
new_tensor = new_values[key].to(model.model.diffusion_model.dtype)
if original_tensor.shape == new_tensor.shape:
model_clone.add_object_patch(f"diffusion_model.{key}.data", new_tensor)
else:
print("ResAdapter: No match for key: ",key)
except:
raise Exception("Could not patch model, this way of patching was added to ComfyUI on March 3rd 2024, is your ComfyUI up to date?")
print("ResAdapter: Added resnet normalization patches")
return (model_clone, )
class Superprompt:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"instruction_prompt": ("STRING", {"default": 'Expand the following prompt to add more detail', "multiline": True}),
"prompt": ("STRING", {"default": '', "multiline": True, "forceInput": True}),
"max_new_tokens": ("INT", {"default": 128, "min": 1, "max": 4096, "step": 1}),
}
}
RETURN_TYPES = ("STRING",)
FUNCTION = "process"
CATEGORY = "KJNodes/text"
DESCRIPTION = """
# SuperPrompt
A T5 model fine-tuned on the SuperPrompt dataset for
upsampling text prompts to more detailed descriptions.
Meant to be used as a pre-generation step for text-to-image
models that benefit from more detailed prompts.
https://huggingface.co/roborovski/superprompt-v1
"""
def process(self, instruction_prompt, prompt, max_new_tokens):
device = model_management.get_torch_device()
from transformers import T5Tokenizer, T5ForConditionalGeneration
checkpoint_path = os.path.join(script_directory, "models","superprompt-v1")
if not os.path.exists(checkpoint_path):
print(f"Downloading model to: {checkpoint_path}")
from huggingface_hub import snapshot_download
snapshot_download(repo_id="roborovski/superprompt-v1",
local_dir=checkpoint_path,
local_dir_use_symlinks=False)
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small", legacy=False)
model = T5ForConditionalGeneration.from_pretrained(checkpoint_path, device_map=device)
model.to(device)
input_text = instruction_prompt + ": " + prompt
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
outputs = model.generate(input_ids, max_new_tokens=max_new_tokens)
out = (tokenizer.decode(outputs[0]))
out = out.replace('<pad>', '')
out = out.replace('</s>', '')
return (out, )
class CameraPoseVisualizer:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"pose_file_path": ("STRING", {"default": '', "multiline": False}),
"base_xval": ("FLOAT", {"default": 0.2,"min": 0, "max": 100, "step": 0.01}),
"zval": ("FLOAT", {"default": 0.3,"min": 0, "max": 100, "step": 0.01}),
"scale": ("FLOAT", {"default": 1.0,"min": 0.01, "max": 10.0, "step": 0.01}),
"use_exact_fx": ("BOOLEAN", {"default": False}),
"relative_c2w": ("BOOLEAN", {"default": True}),
"use_viewer": ("BOOLEAN", {"default": False}),
},
"optional": {
"cameractrl_poses": ("CAMERACTRL_POSES", {"default": None}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "plot"
CATEGORY = "KJNodes/misc"
DESCRIPTION = """
Visualizes the camera poses, from Animatediff-Evolved CameraCtrl Pose
or a .txt file with RealEstate camera intrinsics and coordinates, in a 3D plot.
"""
def plot(self, pose_file_path, scale, base_xval, zval, use_exact_fx, relative_c2w, use_viewer, cameractrl_poses=None):
import matplotlib as mpl
import matplotlib.pyplot as plt
from torchvision.transforms import ToTensor
x_min = -2.0 * scale
x_max = 2.0 * scale
y_min = -2.0 * scale
y_max = 2.0 * scale
z_min = -2.0 * scale
z_max = 2.0 * scale
plt.rcParams['text.color'] = '#999999'
self.fig = plt.figure(figsize=(18, 7))
self.fig.patch.set_facecolor('#353535')
self.ax = self.fig.add_subplot(projection='3d')
self.ax.set_facecolor('#353535') # Set the background color here
self.ax.grid(color='#999999', linestyle='-', linewidth=0.5)
self.plotly_data = None # plotly data traces
self.ax.set_aspect("auto")
self.ax.set_xlim(x_min, x_max)
self.ax.set_ylim(y_min, y_max)
self.ax.set_zlim(z_min, z_max)
self.ax.set_xlabel('x', color='#999999')
self.ax.set_ylabel('y', color='#999999')
self.ax.set_zlabel('z', color='#999999')
for text in self.ax.get_xticklabels() + self.ax.get_yticklabels() + self.ax.get_zticklabels():
text.set_color('#999999')
print('initialize camera pose visualizer')
if pose_file_path != "":
with open(pose_file_path, 'r') as f:
poses = f.readlines()
w2cs = [np.asarray([float(p) for p in pose.strip().split(' ')[7:]]).reshape(3, 4) for pose in poses[1:]]
fxs = [float(pose.strip().split(' ')[1]) for pose in poses[1:]]
#print(poses)
elif cameractrl_poses is not None:
poses = cameractrl_poses
w2cs = [np.array(pose[7:]).reshape(3, 4) for pose in cameractrl_poses]
fxs = [pose[1] for pose in cameractrl_poses]
else:
raise ValueError("Please provide either pose_file_path or cameractrl_poses")
total_frames = len(w2cs)
transform_matrix = np.asarray([[1, 0, 0, 0], [0, 0, 1, 0], [0, -1, 0, 0], [0, 0, 0, 1]]).reshape(4, 4)
last_row = np.zeros((1, 4))
last_row[0, -1] = 1.0
w2cs = [np.concatenate((w2c, last_row), axis=0) for w2c in w2cs]
c2ws = self.get_c2w(w2cs, transform_matrix, relative_c2w)
for frame_idx, c2w in enumerate(c2ws):
self.extrinsic2pyramid(c2w, frame_idx / total_frames, hw_ratio=1/1, base_xval=base_xval,
zval=(fxs[frame_idx] if use_exact_fx else zval))
# Create the colorbar
cmap = mpl.cm.rainbow
norm = mpl.colors.Normalize(vmin=0, vmax=total_frames)
colorbar = self.fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), ax=self.ax, orientation='vertical')
# Change the colorbar label
colorbar.set_label('Frame', color='#999999') # Change the label and its color
# Change the tick colors
colorbar.ax.yaxis.set_tick_params(colors='#999999') # Change the tick color
# Change the tick frequency
# Assuming you want to set the ticks at every 10th frame
ticks = np.arange(0, total_frames, 10)
colorbar.ax.yaxis.set_ticks(ticks)
plt.title('')
plt.draw()
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
buf.seek(0)
img = Image.open(buf)
tensor_img = ToTensor()(img)
buf.close()
tensor_img = tensor_img.permute(1, 2, 0).unsqueeze(0)
if use_viewer:
time.sleep(1)
plt.show()
return (tensor_img,)
def extrinsic2pyramid(self, extrinsic, color_map='red', hw_ratio=1/1, base_xval=1, zval=3):
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
vertex_std = np.array([[0, 0, 0, 1],
[base_xval, -base_xval * hw_ratio, zval, 1],
[base_xval, base_xval * hw_ratio, zval, 1],
[-base_xval, base_xval * hw_ratio, zval, 1],
[-base_xval, -base_xval * hw_ratio, zval, 1]])
vertex_transformed = vertex_std @ extrinsic.T
meshes = [[vertex_transformed[0, :-1], vertex_transformed[1][:-1], vertex_transformed[2, :-1]],
[vertex_transformed[0, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1]],
[vertex_transformed[0, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]],
[vertex_transformed[0, :-1], vertex_transformed[4, :-1], vertex_transformed[1, :-1]],
[vertex_transformed[1, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]]]
color = color_map if isinstance(color_map, str) else plt.cm.rainbow(color_map)
self.ax.add_collection3d(
Poly3DCollection(meshes, facecolors=color, linewidths=0.3, edgecolors=color, alpha=0.25))
def customize_legend(self, list_label):
from matplotlib.patches import Patch
import matplotlib.pyplot as plt
list_handle = []
for idx, label in enumerate(list_label):
color = plt.cm.rainbow(idx / len(list_label))
patch = Patch(color=color, label=label)
list_handle.append(patch)
plt.legend(loc='right', bbox_to_anchor=(1.8, 0.5), handles=list_handle)
def get_c2w(self, w2cs, transform_matrix, relative_c2w):
if relative_c2w:
target_cam_c2w = np.array([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
])
abs2rel = target_cam_c2w @ w2cs[0]
ret_poses = [target_cam_c2w, ] + [abs2rel @ np.linalg.inv(w2c) for w2c in w2cs[1:]]
else:
ret_poses = [np.linalg.inv(w2c) for w2c in w2cs]
ret_poses = [transform_matrix @ x for x in ret_poses]
return np.array(ret_poses, dtype=np.float32)
class StabilityAPI_SD3:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"prompt": ("STRING", {"multiline": True}),
"n_prompt": ("STRING", {"multiline": True}),
"seed": ("INT", {"default": 123,"min": 0, "max": 4294967294, "step": 1}),
"model": (
[
'sd3',
'sd3-turbo',
],
{
"default": 'sd3'
}),
"aspect_ratio": (
[
'1:1',
'16:9',
'21:9',
'2:3',
'3:2',
'4:5',
'5:4',
'9:16',
'9:21',
],
{
"default": '1:1'
}),
"output_format": (
[
'png',
'jpeg',
],
{
"default": 'jpeg'
}),
},
"optional": {
"api_key": ("STRING", {"multiline": True}),
"image": ("IMAGE",),
"img2img_strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"disable_metadata": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "apicall"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = """
## Calls StabilityAI API
Although you may have multiple keys in your account,
you should use the same key for all requests to this API.
Get your API key here: https://platform.stability.ai/account/keys
Recommended to set the key in the config.json -file under this
node packs folder.
# WARNING:
Otherwise the API key may get saved in the image metadata even
with "disable_metadata" on if the workflow includes save nodes
separate from this node.
sd3 requires 6.5 credits per generation
sd3-turbo requires 4 credits per generation
If no image is provided, mode is set to text-to-image
"""
def apicall(self, prompt, n_prompt, model, seed, aspect_ratio, output_format,
img2img_strength=0.5, image=None, disable_metadata=True, api_key=""):
from comfy.cli_args import args
if disable_metadata:
args.disable_metadata = True
else:
args.disable_metadata = False
import requests
from torchvision import transforms
data = {
"mode": "text-to-image",
"prompt": prompt,
"model": model,
"seed": seed,
"output_format": output_format
}
if image is not None:
image = image.permute(0, 3, 1, 2).squeeze(0)
to_pil = transforms.ToPILImage()
pil_image = to_pil(image)
# Save the PIL Image to a BytesIO object
buffer = io.BytesIO()
pil_image.save(buffer, format='PNG')
buffer.seek(0)
files = {"image": ("image.png", buffer, "image/png")}
data["mode"] = "image-to-image"
data["image"] = pil_image
data["strength"] = img2img_strength
else:
data["aspect_ratio"] = aspect_ratio,
files = {"none": ''}
if model != "sd3-turbo":
data["negative_prompt"] = n_prompt
headers={
"accept": "image/*"
}
if api_key != "":
headers["authorization"] = api_key
else:
config_file_path = os.path.join(script_directory,"config.json")
with open(config_file_path, 'r') as file:
config = json.load(file)
api_key_from_config = config.get("sai_api_key")
headers["authorization"] = api_key_from_config
response = requests.post(
f"https://api.stability.ai/v2beta/stable-image/generate/sd3",
headers=headers,
files = files,
data = data,
)
if response.status_code == 200:
# Convert the response content to a PIL Image
image = Image.open(io.BytesIO(response.content))
# Convert the PIL Image to a PyTorch tensor
transform = transforms.ToTensor()
tensor_image = transform(image)
tensor_image = tensor_image.unsqueeze(0)
tensor_image = tensor_image.permute(0, 2, 3, 1).cpu().float()
return (tensor_image,)
else:
try:
# Attempt to parse the response as JSON
error_data = response.json()
raise Exception(f"Server error: {error_data}")
except json.JSONDecodeError:
# If the response is not valid JSON, raise a different exception
raise Exception(f"Server error: {response.text}")
class CheckpointPerturbWeights:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"joint_blocks": ("FLOAT", {"default": 0.02, "min": 0.001, "max": 10.0, "step": 0.001}),
"final_layer": ("FLOAT", {"default": 0.02, "min": 0.001, "max": 10.0, "step": 0.001}),
"rest_of_the_blocks": ("FLOAT", {"default": 0.02, "min": 0.001, "max": 10.0, "step": 0.001}),
"seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "mod"
OUTPUT_NODE = True
CATEGORY = "KJNodes/experimental"
def mod(self, seed, model, joint_blocks, final_layer, rest_of_the_blocks):
import copy
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
device = model_management.get_torch_device()
model_copy = copy.deepcopy(model)
model_copy.model.to(device)
keys = model_copy.model.diffusion_model.state_dict().keys()
dict = {}
for key in keys:
dict[key] = model_copy.model.diffusion_model.state_dict()[key]
pbar = ProgressBar(len(keys))
for k in keys:
v = dict[k]
print(f'{k}: {v.std()}')
if k.startswith('joint_blocks'):
multiplier = joint_blocks
elif k.startswith('final_layer'):
multiplier = final_layer
else:
multiplier = rest_of_the_blocks
dict[k] += torch.normal(torch.zeros_like(v) * v.mean(), torch.ones_like(v) * v.std() * multiplier).to(device)
pbar.update(1)
model_copy.model.diffusion_model.load_state_dict(dict)
return model_copy,
class DifferentialDiffusionAdvanced():
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL", ),
"samples": ("LATENT",),
"mask": ("MASK",),
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.001}),
}}
RETURN_TYPES = ("MODEL", "LATENT")
FUNCTION = "apply"
CATEGORY = "_for_testing"
INIT = False
def apply(self, model, samples, mask, multiplier):
self.multiplier = multiplier
model = model.clone()
model.set_model_denoise_mask_function(self.forward)
s = samples.copy()
s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
return (model, s)
def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict):
model = extra_options["model"]
step_sigmas = extra_options["sigmas"]
sigma_to = model.inner_model.model_sampling.sigma_min
if step_sigmas[-1] > sigma_to:
sigma_to = step_sigmas[-1]
sigma_from = step_sigmas[0]
ts_from = model.inner_model.model_sampling.timestep(sigma_from)
ts_to = model.inner_model.model_sampling.timestep(sigma_to)
current_ts = model.inner_model.model_sampling.timestep(sigma[0])
threshold = (current_ts - ts_to) / (ts_from - ts_to) / self.multiplier
return (denoise_mask >= threshold).to(denoise_mask.dtype)
class FluxBlockLoraSelect:
def __init__(self):
self.loaded_lora = None
@classmethod
def INPUT_TYPES(s):
arg_dict = {}
argument = ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.01})
for i in range(19):
arg_dict["double_blocks.{}.".format(i)] = argument
for i in range(38):
arg_dict["single_blocks.{}.".format(i)] = argument
return {"required": arg_dict}
RETURN_TYPES = ("SELECTEDBLOCKS", )
RETURN_NAMES = ("blocks", )
OUTPUT_TOOLTIPS = ("The modified diffusion model.",)
FUNCTION = "load_lora"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = "Select individual block alpha values, value of 0 removes the block altogether"
def load_lora(self, **kwargs):
return (kwargs,)
class FluxBlockLoraLoader:
def __init__(self):
self.loaded_lora = None
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL", {"tooltip": "The diffusion model the LoRA will be applied to."}),
"strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01, "tooltip": "How strongly to modify the diffusion model. This value can be negative."}),
},
"optional": {
"lora_name": (folder_paths.get_filename_list("loras"), {"tooltip": "The name of the LoRA."}),
"opt_lora_path": ("STRING", {"forceInput": True, "tooltip": "Absolute path of the LoRA."}),
"blocks": ("SELECTEDBLOCKS",),
}
}
RETURN_TYPES = ("MODEL", "STRING", )
RETURN_NAMES = ("model", "rank", )
OUTPUT_TOOLTIPS = ("The modified diffusion model.", "possible rank of the LoRA.")
FUNCTION = "load_lora"
CATEGORY = "KJNodes/experimental"
def load_lora(self, model, strength_model, lora_name=None, opt_lora_path=None, blocks=None):
from comfy.utils import load_torch_file
import comfy.lora
if opt_lora_path:
lora_path = opt_lora_path
else:
lora_path = folder_paths.get_full_path("loras", lora_name)
lora = None
if self.loaded_lora is not None:
if self.loaded_lora[0] == lora_path:
lora = self.loaded_lora[1]
else:
temp = self.loaded_lora
self.loaded_lora = None
del temp
if lora is None:
lora = load_torch_file(lora_path, safe_load=True)
# Find the first key that ends with "weight"
rank = "unknown"
weight_key = next((key for key in lora.keys() if key.endswith('weight')), None)
# Print the shape of the value corresponding to the key
if weight_key:
print(f"Shape of the first 'weight' key ({weight_key}): {lora[weight_key].shape}")
rank = str(lora[weight_key].shape[0])
else:
print("No key ending with 'weight' found.")
rank = "Couldn't find rank"
self.loaded_lora = (lora_path, lora)
key_map = {}
if model is not None:
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
loaded = comfy.lora.load_lora(lora, key_map)
if blocks is not None:
keys_to_delete = []
for block in blocks:
for key in list(loaded.keys()):
match = False
if isinstance(key, str) and block in key:
match = True
elif isinstance(key, tuple):
for k in key:
if block in k:
match = True
break
if match:
ratio = blocks[block]
if ratio == 0:
keys_to_delete.append(key)
else:
value = loaded[key]
if isinstance(value, tuple) and len(value) > 1 and isinstance(value[1], tuple):
inner_tuple = value[1]
if len(inner_tuple) >= 3:
inner_tuple = (inner_tuple[0], inner_tuple[1], ratio, *inner_tuple[3:])
loaded[key] = (value[0], inner_tuple)
else:
loaded[key] = (value[0], ratio)
for key in keys_to_delete:
del loaded[key]
print("loading lora keys:")
for key, value in loaded.items():
if isinstance(value, tuple) and len(value) > 1 and isinstance(value[1], tuple):
inner_tuple = value[1]
alpha = inner_tuple[2] if len(inner_tuple) >= 3 else None
else:
alpha = value[1] if len(value) > 1 else None
print(f"Key: {key}, Alpha: {alpha}")
if model is not None:
new_modelpatcher = model.clone()
k = new_modelpatcher.add_patches(loaded, strength_model)
k = set(k)
for x in loaded:
if (x not in k):
print("NOT LOADED {}".format(x))
return (new_modelpatcher, rank)
class CustomControlNetWeightsFluxFromList:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"list_of_floats": ("FLOAT", {"forceInput": True}, ),
},
"optional": {
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
FUNCTION = "load_weights"
DESCRIPTION = "Creates controlnet weights from a list of floats for Advanced-ControlNet"
CATEGORY = "KJNodes/controlnet"
def load_weights(self, list_of_floats: list[float],
uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
acn_nodes = importlib.import_module("ComfyUI-Advanced-ControlNet")
ControlWeights = acn_nodes.adv_control.utils.ControlWeights
TimestepKeyframeGroup = acn_nodes.adv_control.utils.TimestepKeyframeGroup
TimestepKeyframe = acn_nodes.adv_control.utils.TimestepKeyframe
weights = ControlWeights.controlnet(weights_input=list_of_floats, uncond_multiplier=uncond_multiplier, extras=cn_extras)
print(weights.weights_input)
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
SHAKKERLABS_UNION_CONTROLNET_TYPES = {
"canny": 0,
"tile": 1,
"depth": 2,
"blur": 3,
"pose": 4,
"gray": 5,
"low quality": 6,
}
class SetShakkerLabsUnionControlNetType:
@classmethod
def INPUT_TYPES(s):
return {"required": {"control_net": ("CONTROL_NET", ),
"type": (["auto"] + list(SHAKKERLABS_UNION_CONTROLNET_TYPES.keys()),)
}}
CATEGORY = "conditioning/controlnet"
RETURN_TYPES = ("CONTROL_NET",)
FUNCTION = "set_controlnet_type"
def set_controlnet_type(self, control_net, type):
control_net = control_net.copy()
type_number = SHAKKERLABS_UNION_CONTROLNET_TYPES.get(type, -1)
if type_number >= 0:
control_net.set_extra_arg("control_type", [type_number])
else:
control_net.set_extra_arg("control_type", [])
return (control_net,)
class ModelSaveKJ:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"filename_prefix": ("STRING", {"default": "diffusion_models/ComfyUI"}),
"model_key_prefix": ("STRING", {"default": "model.diffusion_model."}),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
CATEGORY = "advanced/model_merging"
def save(self, model, filename_prefix, model_key_prefix, prompt=None, extra_pnginfo=None):
from comfy.utils import save_torch_file
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
load_models = [model]
model_management.load_models_gpu(load_models, force_patch_weights=True)
default_prefix = "model.diffusion_model."
sd = model.model.state_dict_for_saving(None, None, None)
new_sd = {}
for k in sd:
if k.startswith(default_prefix):
new_key = model_key_prefix + k[len(default_prefix):]
else:
new_key = k # In case the key doesn't start with the default prefix, keep it unchanged
t = sd[k]
if not t.is_contiguous():
t = t.contiguous()
new_sd[new_key] = t
print(full_output_folder)
if not os.path.exists(full_output_folder):
os.makedirs(full_output_folder)
save_torch_file(new_sd, os.path.join(full_output_folder, output_checkpoint))
return {}
from comfy.ldm.modules import attention as comfy_attention
orig_attention = comfy_attention.optimized_attention
class BaseLoaderKJ:
original_linear = None
cublas_patched = False
def _patch_modules(self, patch_cublaslinear, sage_attention):
from comfy.ops import disable_weight_init, CastWeightBiasOp, cast_bias_weight
import torch
global orig_attention
if 'orig_attention' not in globals():
orig_attention = comfy_attention.optimized_attention
if sage_attention:
from sageattention import sageattn
@torch.compiler.disable()
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
if skip_reshape:
b, _, _, dim_head = q.shape
else:
b, _, dim_head = q.shape
dim_head //= heads
if dim_head not in (64, 96, 128) or not (k.shape == q.shape and v.shape == q.shape):
return orig_attention(q, k, v, heads, mask, attn_precision, skip_reshape)
if not skip_reshape:
q, k, v = map(
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
(q, k, v),
)
return (
sageattn(q, k, v, is_causal=False, attn_mask=mask, dropout_p=0.0, smooth_k=True)
.transpose(1, 2)
.reshape(b, -1, heads * dim_head)
)
comfy_attention.optimized_attention = attention_sage
else:
comfy_attention.optimized_attention = orig_attention
if patch_cublaslinear:
if not BaseLoaderKJ.cublas_patched:
BaseLoaderKJ.original_linear = disable_weight_init.Linear
try:
from cublas_ops import CublasLinear
except ImportError:
raise Exception("Can't import 'torch-cublas-hgemm', install it from here https://github.com/aredden/torch-cublas-hgemm")
class PatchedLinear(CublasLinear, CastWeightBiasOp):
def reset_parameters(self):
pass
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
disable_weight_init.Linear = PatchedLinear
BaseLoaderKJ.cublas_patched = True
else:
if BaseLoaderKJ.cublas_patched:
disable_weight_init.Linear = BaseLoaderKJ.original_linear
BaseLoaderKJ.cublas_patched = False
class CheckpointLoaderKJ(BaseLoaderKJ):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), {"tooltip": "The name of the checkpoint (model) to load."}),
"patch_cublaslinear": ("BOOLEAN", {"default": True, "tooltip": "Enable or disable the patching, won't take effect on already loaded models!"}),
"sage_attention": ("BOOLEAN", {"default": False, "tooltip": "Patch comfy attention to use sageattn."}),
}}
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
FUNCTION = "patch"
OUTPUT_NODE = True
DESCRIPTION = "Experimental node for patching torch.nn.Linear with CublasLinear."
EXPERIMENTAL = True
CATEGORY = "KJNodes/experimental"
def patch(self, ckpt_name, patch_cublaslinear, sage_attention):
self._patch_modules(patch_cublaslinear, sage_attention)
from nodes import CheckpointLoaderSimple
model, clip, vae = CheckpointLoaderSimple.load_checkpoint(self, ckpt_name)
return model, clip, vae
class DiffusionModelLoaderKJ(BaseLoaderKJ):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"ckpt_name": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "The name of the checkpoint (model) to load."}),
"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e4m3fn_fast", "fp8_e5m2"],),
"patch_cublaslinear": ("BOOLEAN", {"default": True, "tooltip": "Enable or disable the patching, won't take effect on already loaded models!"}),
"sage_attention": ("BOOLEAN", {"default": False, "tooltip": "Patch comfy attention to use sageattn."}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch_and_load"
OUTPUT_NODE = True
DESCRIPTION = "Node for patching torch.nn.Linear with CublasLinear."
EXPERIMENTAL = True
CATEGORY = "KJNodes/experimental"
def patch_and_load(self, ckpt_name, weight_dtype, patch_cublaslinear, sage_attention):
self._patch_modules(patch_cublaslinear, sage_attention)
from nodes import UNETLoader
model, = UNETLoader.load_unet(self, ckpt_name, weight_dtype)
return (model,)
import comfy.model_patcher
import comfy.utils
import comfy.sd
original_patch_model = comfy.model_patcher.ModelPatcher.patch_model
original_load_lora_for_models = comfy.sd.load_lora_for_models
def patched_patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False):
if lowvram_model_memory == 0:
full_load = True
else:
full_load = False
if load_weights:
self.load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, full_load=full_load)
for k in self.object_patches:
old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
if k not in self.object_patches_backup:
self.object_patches_backup[k] = old
return self.model
def patched_load_lora_for_models(model, clip, lora, strength_model, strength_clip):
patch_keys = list(model.object_patches_backup.keys())
for k in patch_keys:
#print("backing up object patch: ", k)
comfy.utils.set_attr(model.model, k, model.object_patches_backup[k])
key_map = {}
if model is not None:
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
if clip is not None:
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
loaded = comfy.lora.load_lora(lora, key_map)
#print(temp_object_patches_backup)
if model is not None:
new_modelpatcher = model.clone()
k = new_modelpatcher.add_patches(loaded, strength_model)
else:
k = ()
new_modelpatcher = None
if clip is not None:
new_clip = clip.clone()
k1 = new_clip.add_patches(loaded, strength_clip)
else:
k1 = ()
new_clip = None
k = set(k)
k1 = set(k1)
for x in loaded:
if (x not in k) and (x not in k1):
print("NOT LOADED {}".format(x))
if patch_keys:
if hasattr(model.model, "compile_settings"):
compile_settings = getattr(model.model, "compile_settings")
print("compile_settings: ", compile_settings)
for k in patch_keys:
if "diffusion_model." in k:
# Remove the prefix to get the attribute path
key = k.replace('diffusion_model.', '')
attributes = key.split('.')
# Start with the diffusion_model object
block = model.get_model_object("diffusion_model")
# Navigate through the attributes to get to the block
for attr in attributes:
if attr.isdigit():
block = block[int(attr)]
else:
block = getattr(block, attr)
# Compile the block
compiled_block = torch.compile(block, mode=compile_settings["mode"], dynamic=compile_settings["dynamic"], fullgraph=compile_settings["fullgraph"], backend=compile_settings["backend"])
# Add the compiled block back as an object patch
model.add_object_patch(k, compiled_block)
return (new_modelpatcher, new_clip)
class PatchModelPatcherOrder:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"patch_order": (["object_patch_first", "weight_patch_first"], {"default": "weight_patch_first", "tooltip": "Patch the comfy patch_model function to load weight patches (LoRAs) before compiling the model"}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/experimental"
DESCTIPTION = "Patch the comfy patch_model function patching order, useful for torch.compile (used as object_patch) as it should come last if you want to use LoRAs with compile"
EXPERIMENTAL = True
def patch(self, model, patch_order):
comfy.model_patcher.ModelPatcher.temp_object_patches_backup = {}
if patch_order == "weight_patch_first":
comfy.model_patcher.ModelPatcher.patch_model = patched_patch_model
comfy.sd.load_lora_for_models = patched_load_lora_for_models
else:
comfy.model_patcher.ModelPatcher.patch_model = original_patch_model
comfy.sd.load_lora_for_models = original_load_lora_for_models
return model,
class TorchCompileModelFluxAdvanced:
def __init__(self):
self._compiled = False
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"backend": (["inductor", "cudagraphs"],),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"double_blocks": ("STRING", {"default": "0-18", "multiline": True}),
"single_blocks": ("STRING", {"default": "0-37", "multiline": True}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/experimental"
EXPERIMENTAL = True
def parse_blocks(self, blocks_str):
blocks = []
for part in blocks_str.split(','):
part = part.strip()
if '-' in part:
start, end = map(int, part.split('-'))
blocks.extend(range(start, end + 1))
else:
blocks.append(int(part))
return blocks
def patch(self, model, backend, mode, fullgraph, single_blocks, double_blocks, dynamic):
single_block_list = self.parse_blocks(single_blocks)
double_block_list = self.parse_blocks(double_blocks)
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
if not self._compiled:
try:
for i, block in enumerate(diffusion_model.double_blocks):
if i in double_block_list:
#print("Compiling double_block", i)
m.add_object_patch(f"diffusion_model.double_blocks.{i}", torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend))
for i, block in enumerate(diffusion_model.single_blocks):
if i in single_block_list:
#print("Compiling single block", i)
m.add_object_patch(f"diffusion_model.single_blocks.{i}", torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend))
self._compiled = True
compile_settings = {
"backend": backend,
"mode": mode,
"fullgraph": fullgraph,
"dynamic": dynamic,
}
setattr(m.model, "compile_settings", compile_settings)
except:
raise RuntimeError("Failed to compile model")
return (m, )
# rest of the layers that are not patched
# diffusion_model.final_layer = torch.compile(diffusion_model.final_layer, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.guidance_in = torch.compile(diffusion_model.guidance_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.img_in = torch.compile(diffusion_model.img_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.time_in = torch.compile(diffusion_model.time_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.txt_in = torch.compile(diffusion_model.txt_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.vector_in = torch.compile(diffusion_model.vector_in, mode=mode, fullgraph=fullgraph, backend=backend)
class TorchCompileVAE:
def __init__(self):
self._compiled_encoder = False
self._compiled_decoder = False
@classmethod
def INPUT_TYPES(s):
return {"required": {
"vae": ("VAE",),
"backend": (["inductor", "cudagraphs"],),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"compile_encoder": ("BOOLEAN", {"default": True, "tooltip": "Compile encoder"}),
"compile_decoder": ("BOOLEAN", {"default": True, "tooltip": "Compile decoder"}),
}}
RETURN_TYPES = ("VAE",)
FUNCTION = "compile"
CATEGORY = "KJNodes/experimental"
EXPERIMENTAL = True
def compile(self, vae, backend, mode, fullgraph, compile_encoder, compile_decoder):
if compile_encoder:
if not self._compiled_encoder:
try:
vae.first_stage_model.encoder = torch.compile(vae.first_stage_model.encoder, mode=mode, fullgraph=fullgraph, backend=backend)
self._compiled_encoder = True
except:
raise RuntimeError("Failed to compile model")
if compile_decoder:
if not self._compiled_decoder:
try:
vae.first_stage_model.decoder = torch.compile(vae.first_stage_model.decoder, mode=mode, fullgraph=fullgraph, backend=backend)
self._compiled_decoder = True
except:
raise RuntimeError("Failed to compile model")
return (vae, )
class TorchCompileControlNet:
def __init__(self):
self._compiled= False
@classmethod
def INPUT_TYPES(s):
return {"required": {
"controlnet": ("CONTROL_NET",),
"backend": (["inductor", "cudagraphs"],),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
}}
RETURN_TYPES = ("CONTROL_NET",)
FUNCTION = "compile"
CATEGORY = "KJNodes/experimental"
EXPERIMENTAL = True
def compile(self, controlnet, backend, mode, fullgraph):
if not self._compiled:
try:
# for i, block in enumerate(controlnet.control_model.double_blocks):
# print("Compiling controlnet double_block", i)
# controlnet.control_model.double_blocks[i] = torch.compile(block, mode=mode, fullgraph=fullgraph, backend=backend)
controlnet.control_model = torch.compile(controlnet.control_model, mode=mode, fullgraph=fullgraph, backend=backend)
self._compiled = True
except:
self._compiled = False
raise RuntimeError("Failed to compile model")
return (controlnet, )
class TorchCompileLTXModel:
def __init__(self):
self._compiled = False
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"backend": (["inductor", "cudagraphs"],),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/experimental"
EXPERIMENTAL = True
def patch(self, model, backend, mode, fullgraph, dynamic):
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
if not self._compiled:
try:
for i, block in enumerate(diffusion_model.transformer_blocks):
compiled_block = torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend)
m.add_object_patch(f"diffusion_model.transformer_blocks.{i}", compiled_block)
self._compiled = True
compile_settings = {
"backend": backend,
"mode": mode,
"fullgraph": fullgraph,
"dynamic": dynamic,
}
setattr(m.model, "compile_settings", compile_settings)
except:
raise RuntimeError("Failed to compile model")
return (m, )
class StyleModelApplyAdvanced:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning": ("CONDITIONING", ),
"style_model": ("STYLE_MODEL", ),
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.001}),
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "apply_stylemodel"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = "StyleModelApply but with strength parameter"
def apply_stylemodel(self, clip_vision_output, style_model, conditioning, strength=1.0):
cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
cond = strength * cond
c = []
for t in conditioning:
n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
c.append(n)
return (c, )