|
from nodes import SaveImage |
|
import torch |
|
import torchvision.transforms.v2 as T |
|
import random |
|
import folder_paths |
|
import comfy.utils |
|
from .image import ImageExpandBatch |
|
from .utils import AnyType |
|
import numpy as np |
|
import scipy |
|
from PIL import Image |
|
from nodes import MAX_RESOLUTION |
|
import math |
|
|
|
any = AnyType("*") |
|
|
|
class MaskBlur: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"mask": ("MASK",), |
|
"amount": ("INT", { "default": 6, "min": 0, "max": 256, "step": 1, }), |
|
"device": (["auto", "cpu", "gpu"],), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MASK",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/mask" |
|
|
|
def execute(self, mask, amount, device): |
|
if amount == 0: |
|
return (mask,) |
|
|
|
if "gpu" == device: |
|
mask = mask.to(comfy.model_management.get_torch_device()) |
|
elif "cpu" == device: |
|
mask = mask.to('cpu') |
|
|
|
if amount % 2 == 0: |
|
amount+= 1 |
|
|
|
if mask.dim() == 2: |
|
mask = mask.unsqueeze(0) |
|
|
|
mask = T.functional.gaussian_blur(mask.unsqueeze(1), amount).squeeze(1) |
|
|
|
if "gpu" == device or "cpu" == device: |
|
mask = mask.to(comfy.model_management.intermediate_device()) |
|
|
|
return(mask,) |
|
|
|
class MaskFlip: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"mask": ("MASK",), |
|
"axis": (["x", "y", "xy"],), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MASK",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/mask" |
|
|
|
def execute(self, mask, axis): |
|
if mask.dim() == 2: |
|
mask = mask.unsqueeze(0) |
|
|
|
dim = () |
|
if "y" in axis: |
|
dim += (1,) |
|
if "x" in axis: |
|
dim += (2,) |
|
mask = torch.flip(mask, dims=dim) |
|
|
|
return(mask,) |
|
|
|
class MaskPreview(SaveImage): |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_temp_directory() |
|
self.type = "temp" |
|
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) |
|
self.compress_level = 4 |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": {"mask": ("MASK",), }, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, |
|
} |
|
|
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/mask" |
|
|
|
def execute(self, mask, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): |
|
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) |
|
return self.save_images(preview, filename_prefix, prompt, extra_pnginfo) |
|
|
|
class MaskBatch: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"mask1": ("MASK",), |
|
"mask2": ("MASK",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MASK",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/mask batch" |
|
|
|
def execute(self, mask1, mask2): |
|
if mask1.shape[1:] != mask2.shape[1:]: |
|
mask2 = comfy.utils.common_upscale(mask2.unsqueeze(1).expand(-1,3,-1,-1), mask1.shape[2], mask1.shape[1], upscale_method='bicubic', crop='center')[:,0,:,:] |
|
|
|
return (torch.cat((mask1, mask2), dim=0),) |
|
|
|
class MaskExpandBatch: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"mask": ("MASK",), |
|
"size": ("INT", { "default": 16, "min": 1, "step": 1, }), |
|
"method": (["expand", "repeat all", "repeat first", "repeat last"],) |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MASK",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/mask batch" |
|
|
|
def execute(self, mask, size, method): |
|
return (ImageExpandBatch().execute(mask.unsqueeze(1).expand(-1,3,-1,-1), size, method)[0][:,0,:,:],) |
|
|
|
|
|
class MaskBoundingBox: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"mask": ("MASK",), |
|
"padding": ("INT", { "default": 0, "min": 0, "max": 4096, "step": 1, }), |
|
"blur": ("INT", { "default": 0, "min": 0, "max": 256, "step": 1, }), |
|
}, |
|
"optional": { |
|
"image_optional": ("IMAGE",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MASK", "IMAGE", "INT", "INT", "INT", "INT") |
|
RETURN_NAMES = ("MASK", "IMAGE", "x", "y", "width", "height") |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/mask" |
|
|
|
def execute(self, mask, padding, blur, image_optional=None): |
|
if mask.dim() == 2: |
|
mask = mask.unsqueeze(0) |
|
|
|
if image_optional is None: |
|
image_optional = mask.unsqueeze(3).repeat(1, 1, 1, 3) |
|
|
|
|
|
if image_optional.shape[1:] != mask.shape[1:]: |
|
image_optional = comfy.utils.common_upscale(image_optional.permute([0,3,1,2]), mask.shape[2], mask.shape[1], upscale_method='bicubic', crop='center').permute([0,2,3,1]) |
|
|
|
|
|
if image_optional.shape[0] < mask.shape[0]: |
|
image_optional = torch.cat((image_optional, image_optional[-1].unsqueeze(0).repeat(mask.shape[0]-image_optional.shape[0], 1, 1, 1)), dim=0) |
|
elif image_optional.shape[0] > mask.shape[0]: |
|
image_optional = image_optional[:mask.shape[0]] |
|
|
|
|
|
if blur > 0: |
|
if blur % 2 == 0: |
|
blur += 1 |
|
mask = T.functional.gaussian_blur(mask.unsqueeze(1), blur).squeeze(1) |
|
|
|
_, y, x = torch.where(mask) |
|
x1 = max(0, x.min().item() - padding) |
|
x2 = min(mask.shape[2], x.max().item() + 1 + padding) |
|
y1 = max(0, y.min().item() - padding) |
|
y2 = min(mask.shape[1], y.max().item() + 1 + padding) |
|
|
|
|
|
mask = mask[:, y1:y2, x1:x2] |
|
image_optional = image_optional[:, y1:y2, x1:x2, :] |
|
|
|
return (mask, image_optional, x1, y1, x2 - x1, y2 - y1) |
|
|
|
|
|
class MaskFromColor: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE", ), |
|
"red": ("INT", { "default": 255, "min": 0, "max": 255, "step": 1, }), |
|
"green": ("INT", { "default": 255, "min": 0, "max": 255, "step": 1, }), |
|
"blue": ("INT", { "default": 255, "min": 0, "max": 255, "step": 1, }), |
|
"threshold": ("INT", { "default": 0, "min": 0, "max": 127, "step": 1, }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MASK",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/mask" |
|
|
|
def execute(self, image, red, green, blue, threshold): |
|
temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int) |
|
color = torch.tensor([red, green, blue]) |
|
lower_bound = (color - threshold).clamp(min=0) |
|
upper_bound = (color + threshold).clamp(max=255) |
|
lower_bound = lower_bound.view(1, 1, 1, 3) |
|
upper_bound = upper_bound.view(1, 1, 1, 3) |
|
mask = (temp >= lower_bound) & (temp <= upper_bound) |
|
mask = mask.all(dim=-1) |
|
mask = mask.float() |
|
|
|
return (mask, ) |
|
|
|
|
|
class MaskFromSegmentation: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE", ), |
|
"segments": ("INT", { "default": 6, "min": 1, "max": 16, "step": 1, }), |
|
"remove_isolated_pixels": ("INT", { "default": 0, "min": 0, "max": 32, "step": 1, }), |
|
"remove_small_masks": ("FLOAT", { "default": 0.0, "min": 0., "max": 1., "step": 0.01, }), |
|
"fill_holes": ("BOOLEAN", { "default": False }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MASK",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/mask" |
|
|
|
def execute(self, image, segments, remove_isolated_pixels, fill_holes, remove_small_masks): |
|
im = image[0] |
|
im = Image.fromarray((im * 255).to(torch.uint8).cpu().numpy(), mode="RGB") |
|
im = im.quantize(palette=im.quantize(colors=segments), dither=Image.Dither.NONE) |
|
im = torch.tensor(np.array(im.convert("RGB"))).float() / 255.0 |
|
|
|
colors = im.reshape(-1, im.shape[-1]) |
|
colors = torch.unique(colors, dim=0) |
|
|
|
masks = [] |
|
for color in colors: |
|
mask = (im == color).all(dim=-1).float() |
|
|
|
if remove_isolated_pixels > 0: |
|
mask = torch.from_numpy(scipy.ndimage.binary_opening(mask.cpu().numpy(), structure=np.ones((remove_isolated_pixels, remove_isolated_pixels)))) |
|
|
|
|
|
if fill_holes: |
|
mask = torch.from_numpy(scipy.ndimage.binary_fill_holes(mask.cpu().numpy())) |
|
|
|
|
|
if mask.sum() / (mask.shape[0]*mask.shape[1]) > remove_small_masks: |
|
masks.append(mask) |
|
|
|
if masks == []: |
|
masks.append(torch.zeros_like(im)[:,:,0]) |
|
|
|
mask = torch.stack(masks, dim=0).float() |
|
|
|
return (mask, ) |
|
|
|
|
|
class MaskFix: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"mask": ("MASK",), |
|
"erode_dilate": ("INT", { "default": 0, "min": -256, "max": 256, "step": 1, }), |
|
"fill_holes": ("INT", { "default": 0, "min": 0, "max": 128, "step": 1, }), |
|
"remove_isolated_pixels": ("INT", { "default": 0, "min": 0, "max": 32, "step": 1, }), |
|
"smooth": ("INT", { "default": 0, "min": 0, "max": 256, "step": 1, }), |
|
"blur": ("INT", { "default": 0, "min": 0, "max": 256, "step": 1, }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MASK",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/mask" |
|
|
|
def execute(self, mask, erode_dilate, smooth, remove_isolated_pixels, blur, fill_holes): |
|
masks = [] |
|
for m in mask: |
|
|
|
if erode_dilate != 0: |
|
if erode_dilate < 0: |
|
m = torch.from_numpy(scipy.ndimage.grey_erosion(m.cpu().numpy(), size=(-erode_dilate, -erode_dilate))) |
|
else: |
|
m = torch.from_numpy(scipy.ndimage.grey_dilation(m.cpu().numpy(), size=(erode_dilate, erode_dilate))) |
|
|
|
|
|
if fill_holes > 0: |
|
|
|
m = torch.from_numpy(scipy.ndimage.grey_closing(m.cpu().numpy(), size=(fill_holes, fill_holes))) |
|
|
|
|
|
if remove_isolated_pixels > 0: |
|
m = torch.from_numpy(scipy.ndimage.grey_opening(m.cpu().numpy(), size=(remove_isolated_pixels, remove_isolated_pixels))) |
|
|
|
|
|
if smooth > 0: |
|
if smooth % 2 == 0: |
|
smooth += 1 |
|
m = T.functional.gaussian_blur((m > 0.5).unsqueeze(0), smooth).squeeze(0) |
|
|
|
|
|
if blur > 0: |
|
if blur % 2 == 0: |
|
blur += 1 |
|
m = T.functional.gaussian_blur(m.float().unsqueeze(0), blur).squeeze(0) |
|
|
|
masks.append(m.float()) |
|
|
|
masks = torch.stack(masks, dim=0).float() |
|
|
|
return (masks, ) |
|
|
|
class MaskSmooth: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"mask": ("MASK",), |
|
"amount": ("INT", { "default": 0, "min": 0, "max": 127, "step": 1, }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MASK",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/mask" |
|
|
|
def execute(self, mask, amount): |
|
if amount == 0: |
|
return (mask,) |
|
|
|
if amount % 2 == 0: |
|
amount += 1 |
|
|
|
mask = mask > 0.5 |
|
mask = T.functional.gaussian_blur(mask.unsqueeze(1), amount).squeeze(1).float() |
|
|
|
return (mask,) |
|
|
|
class MaskFromBatch: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"mask": ("MASK", ), |
|
"start": ("INT", { "default": 0, "min": 0, "step": 1, }), |
|
"length": ("INT", { "default": 1, "min": 1, "step": 1, }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MASK",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/mask batch" |
|
|
|
def execute(self, mask, start, length): |
|
if length > mask.shape[0]: |
|
length = mask.shape[0] |
|
|
|
start = min(start, mask.shape[0]-1) |
|
length = min(mask.shape[0]-start, length) |
|
return (mask[start:start + length], ) |
|
|
|
class MaskFromList: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"width": ("INT", { "default": 32, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), |
|
"height": ("INT", { "default": 32, "min": 0, "max": MAX_RESOLUTION, "step": 8, }), |
|
}, "optional": { |
|
"values": (any, { "default": 0.0, "min": 0.0, "max": 1.0, }), |
|
"str_values": ("STRING", { "default": "", "multiline": True, "placeholder": "0.0, 0.5, 1.0",}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MASK",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/mask" |
|
|
|
def execute(self, width, height, values=None, str_values=""): |
|
out = [] |
|
|
|
if values is not None: |
|
if not isinstance(values, list): |
|
out = [values] |
|
else: |
|
out.extend([float(v) for v in values]) |
|
|
|
if str_values != "": |
|
str_values = [float(v) for v in str_values.split(",")] |
|
out.extend(str_values) |
|
|
|
if out == []: |
|
raise ValueError("No values provided") |
|
|
|
out = torch.tensor(out).float().clamp(0.0, 1.0) |
|
out = out.view(-1, 1, 1).expand(-1, height, width) |
|
|
|
values = None |
|
str_values = "" |
|
|
|
return (out, ) |
|
|
|
class MaskFromRGBCMYBW: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE", ), |
|
"threshold_r": ("FLOAT", { "default": 0.15, "min": 0.0, "max": 1, "step": 0.01, }), |
|
"threshold_g": ("FLOAT", { "default": 0.15, "min": 0.0, "max": 1, "step": 0.01, }), |
|
"threshold_b": ("FLOAT", { "default": 0.15, "min": 0.0, "max": 1, "step": 0.01, }), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MASK","MASK","MASK","MASK","MASK","MASK","MASK","MASK",) |
|
RETURN_NAMES = ("red","green","blue","cyan","magenta","yellow","black","white",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/mask" |
|
|
|
def execute(self, image, threshold_r, threshold_g, threshold_b): |
|
red = ((image[..., 0] >= 1-threshold_r) & (image[..., 1] < threshold_g) & (image[..., 2] < threshold_b)).float() |
|
green = ((image[..., 0] < threshold_r) & (image[..., 1] >= 1-threshold_g) & (image[..., 2] < threshold_b)).float() |
|
blue = ((image[..., 0] < threshold_r) & (image[..., 1] < threshold_g) & (image[..., 2] >= 1-threshold_b)).float() |
|
|
|
cyan = ((image[..., 0] < threshold_r) & (image[..., 1] >= 1-threshold_g) & (image[..., 2] >= 1-threshold_b)).float() |
|
magenta = ((image[..., 0] >= 1-threshold_r) & (image[..., 1] < threshold_g) & (image[..., 2] > 1-threshold_b)).float() |
|
yellow = ((image[..., 0] >= 1-threshold_r) & (image[..., 1] >= 1-threshold_g) & (image[..., 2] < threshold_b)).float() |
|
|
|
black = ((image[..., 0] <= threshold_r) & (image[..., 1] <= threshold_g) & (image[..., 2] <= threshold_b)).float() |
|
white = ((image[..., 0] >= 1-threshold_r) & (image[..., 1] >= 1-threshold_g) & (image[..., 2] >= 1-threshold_b)).float() |
|
|
|
return (red, green, blue, cyan, magenta, yellow, black, white,) |
|
|
|
class TransitionMask: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"width": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }), |
|
"height": ("INT", { "default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1, }), |
|
"frames": ("INT", { "default": 16, "min": 1, "max": 9999, "step": 1, }), |
|
"start_frame": ("INT", { "default": 0, "min": 0, "step": 1, }), |
|
"end_frame": ("INT", { "default": 9999, "min": 0, "step": 1, }), |
|
"transition_type": (["horizontal slide", "vertical slide", "horizontal bar", "vertical bar", "center box", "horizontal door", "vertical door", "circle", "fade"],), |
|
"timing_function": (["linear", "in", "out", "in-out"],) |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MASK",) |
|
FUNCTION = "execute" |
|
CATEGORY = "essentials/mask" |
|
|
|
def linear(self, i, t): |
|
return i/t |
|
def ease_in(self, i, t): |
|
return pow(i/t, 2) |
|
def ease_out(self, i, t): |
|
return 1 - pow(1 - i/t, 2) |
|
def ease_in_out(self, i, t): |
|
if i < t/2: |
|
return pow(i/(t/2), 2) / 2 |
|
else: |
|
return 1 - pow(1 - (i - t/2)/(t/2), 2) / 2 |
|
|
|
def execute(self, width, height, frames, start_frame, end_frame, transition_type, timing_function): |
|
if timing_function == 'in': |
|
timing_function = self.ease_in |
|
elif timing_function == 'out': |
|
timing_function = self.ease_out |
|
elif timing_function == 'in-out': |
|
timing_function = self.ease_in_out |
|
else: |
|
timing_function = self.linear |
|
|
|
out = [] |
|
|
|
end_frame = min(frames, end_frame) |
|
transition = end_frame - start_frame |
|
|
|
if start_frame > 0: |
|
out = out + [torch.full((height, width), 0.0, dtype=torch.float32, device="cpu")] * start_frame |
|
|
|
for i in range(transition): |
|
frame = torch.full((height, width), 0.0, dtype=torch.float32, device="cpu") |
|
progress = timing_function(i, transition-1) |
|
|
|
if "horizontal slide" in transition_type: |
|
pos = round(width*progress) |
|
frame[:, :pos] = 1.0 |
|
elif "vertical slide" in transition_type: |
|
pos = round(height*progress) |
|
frame[:pos, :] = 1.0 |
|
elif "box" in transition_type: |
|
box_w = round(width*progress) |
|
box_h = round(height*progress) |
|
x1 = (width - box_w) // 2 |
|
y1 = (height - box_h) // 2 |
|
x2 = x1 + box_w |
|
y2 = y1 + box_h |
|
frame[y1:y2, x1:x2] = 1.0 |
|
elif "circle" in transition_type: |
|
radius = math.ceil(math.sqrt(pow(width,2)+pow(height,2))*progress/2) |
|
c_x = width // 2 |
|
c_y = height // 2 |
|
|
|
x = torch.arange(0, width, dtype=torch.float32, device="cpu") |
|
y = torch.arange(0, height, dtype=torch.float32, device="cpu") |
|
y, x = torch.meshgrid((y, x), indexing="ij") |
|
circle = ((x - c_x) ** 2 + (y - c_y) ** 2) <= (radius ** 2) |
|
frame[circle] = 1.0 |
|
elif "horizontal bar" in transition_type: |
|
bar = round(height*progress) |
|
y1 = (height - bar) // 2 |
|
y2 = y1 + bar |
|
frame[y1:y2, :] = 1.0 |
|
elif "vertical bar" in transition_type: |
|
bar = round(width*progress) |
|
x1 = (width - bar) // 2 |
|
x2 = x1 + bar |
|
frame[:, x1:x2] = 1.0 |
|
elif "horizontal door" in transition_type: |
|
bar = math.ceil(height*progress/2) |
|
if bar > 0: |
|
frame[:bar, :] = 1.0 |
|
frame[-bar:, :] = 1.0 |
|
elif "vertical door" in transition_type: |
|
bar = math.ceil(width*progress/2) |
|
if bar > 0: |
|
frame[:, :bar] = 1.0 |
|
frame[:, -bar:] = 1.0 |
|
elif "fade" in transition_type: |
|
frame[:,:] = progress |
|
|
|
out.append(frame) |
|
|
|
if end_frame < frames: |
|
out = out + [torch.full((height, width), 1.0, dtype=torch.float32, device="cpu")] * (frames - end_frame) |
|
|
|
out = torch.stack(out, dim=0) |
|
|
|
return (out, ) |
|
|
|
MASK_CLASS_MAPPINGS = { |
|
"MaskBlur+": MaskBlur, |
|
"MaskBoundingBox+": MaskBoundingBox, |
|
"MaskFix+": MaskFix, |
|
"MaskFlip+": MaskFlip, |
|
"MaskFromColor+": MaskFromColor, |
|
"MaskFromList+": MaskFromList, |
|
"MaskFromRGBCMYBW+": MaskFromRGBCMYBW, |
|
"MaskFromSegmentation+": MaskFromSegmentation, |
|
"MaskPreview+": MaskPreview, |
|
"MaskSmooth+": MaskSmooth, |
|
"TransitionMask+": TransitionMask, |
|
|
|
|
|
"MaskBatch+": MaskBatch, |
|
"MaskExpandBatch+": MaskExpandBatch, |
|
"MaskFromBatch+": MaskFromBatch, |
|
} |
|
|
|
MASK_NAME_MAPPINGS = { |
|
"MaskBlur+": "π§ Mask Blur", |
|
"MaskFix+": "π§ Mask Fix", |
|
"MaskFlip+": "π§ Mask Flip", |
|
"MaskFromColor+": "π§ Mask From Color", |
|
"MaskFromList+": "π§ Mask From List", |
|
"MaskFromRGBCMYBW+": "π§ Mask From RGB/CMY/BW", |
|
"MaskFromSegmentation+": "π§ Mask From Segmentation", |
|
"MaskPreview+": "π§ Mask Preview", |
|
"MaskBoundingBox+": "π§ Mask Bounding Box", |
|
"MaskSmooth+": "π§ Mask Smooth", |
|
"TransitionMask+": "π§ Transition Mask", |
|
|
|
"MaskBatch+": "π§ Mask Batch", |
|
"MaskExpandBatch+": "π§ Mask Expand Batch", |
|
"MaskFromBatch+": "π§ Mask From Batch", |
|
} |
|
|