Spaces:
ginipick
/
Running on Zero

multimodalart's picture
Squashing commit
4450790 verified
raw
history blame
11.2 kB
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFilter
from ..log import log
from ..utils import np2tensor, pil2tensor, tensor2np, tensor2pil
class MTB_Bbox:
"""The bounding box (BBOX) custom type used by other nodes"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
# "bbox": ("BBOX",),
"x": (
"INT",
{"default": 0, "max": 10000000, "min": 0, "step": 1},
),
"y": (
"INT",
{"default": 0, "max": 10000000, "min": 0, "step": 1},
),
"width": (
"INT",
{"default": 256, "max": 10000000, "min": 0, "step": 1},
),
"height": (
"INT",
{"default": 256, "max": 10000000, "min": 0, "step": 1},
),
}
}
RETURN_TYPES = ("BBOX",)
FUNCTION = "do_crop"
CATEGORY = "mtb/crop"
def do_crop(self, x: int, y: int, width: int, height: int): # bbox
return ((x, y, width, height),)
class MTB_SplitBbox:
"""Split the components of a bbox"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {"bbox": ("BBOX",)},
}
CATEGORY = "mtb/crop"
FUNCTION = "split_bbox"
RETURN_TYPES = ("INT", "INT", "INT", "INT")
RETURN_NAMES = ("x", "y", "width", "height")
def split_bbox(self, bbox):
return (bbox[0], bbox[1], bbox[2], bbox[3])
class MTB_UpscaleBboxBy:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"bbox": ("BBOX",),
"scale": ("FLOAT", {"default": 1.0}),
},
}
CATEGORY = "mtb/crop"
RETURN_TYPES = ("BBOX",)
FUNCTION = "upscale"
def upscale(
self, bbox: tuple[int, int, int, int], scale: float
) -> tuple[tuple[int, int, int, int]]:
x, y, width, height = bbox
# scaled = (x * scale, y * scale, width * scale, height * scale)
scaled = (
int(x * scale),
int(y * scale),
int(width * scale),
int(height * scale),
)
return (scaled,)
class MTB_BboxFromMask:
"""From a mask extract the bounding box"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mask": ("MASK",),
"invert": ("BOOLEAN", {"default": False}),
},
"optional": {
"image": ("IMAGE",),
},
}
RETURN_TYPES = (
"BBOX",
"IMAGE",
)
RETURN_NAMES = (
"bbox",
"image (optional)",
)
FUNCTION = "extract_bounding_box"
CATEGORY = "mtb/crop"
def extract_bounding_box(
self, mask: torch.Tensor, invert: bool, image=None
):
# if image != None:
# if mask.size(0) != image.size(0):
# if mask.size(0) != 1:
# log.error(
# f"Batch count mismatch for mask and image, it can either be 1 mask for X images, or X masks for X images (mask: {mask.shape} | image: {image.shape})"
# )
# raise Exception(
# f"Batch count mismatch for mask and image, it can either be 1 mask for X images, or X masks for X images (mask: {mask.shape} | image: {image.shape})"
# )
# we invert it
_mask = tensor2pil(1.0 - mask)[0] if invert else tensor2pil(mask)[0]
alpha_channel = np.array(_mask)
non_zero_indices = np.nonzero(alpha_channel)
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
# Create a bounding box tuple
if image != None:
# Convert the image to a NumPy array
imgs = tensor2np(image)
out = []
for img in imgs:
# Crop the image from the bounding box
img = img[min_y:max_y, min_x:max_x, :]
log.debug(f"Cropped image to shape {img.shape}")
out.append(img)
image = np2tensor(out)
log.debug(f"Cropped images shape: {image.shape}")
bounding_box = (min_x, min_y, max_x - min_x, max_y - min_y)
return (
bounding_box,
image,
)
class MTB_Crop:
"""Crops an image and an optional mask to a given bounding box
The bounding box can be given as a tuple of (x, y, width, height) or as a BBOX type
The BBOX input takes precedence over the tuple input
"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
},
"optional": {
"mask": ("MASK",),
"x": (
"INT",
{"default": 0, "max": 10000000, "min": 0, "step": 1},
),
"y": (
"INT",
{"default": 0, "max": 10000000, "min": 0, "step": 1},
),
"width": (
"INT",
{"default": 256, "max": 10000000, "min": 0, "step": 1},
),
"height": (
"INT",
{"default": 256, "max": 10000000, "min": 0, "step": 1},
),
"bbox": ("BBOX",),
},
}
RETURN_TYPES = ("IMAGE", "MASK", "BBOX")
FUNCTION = "do_crop"
CATEGORY = "mtb/crop"
def do_crop(
self,
image: torch.Tensor,
mask=None,
x=0,
y=0,
width=256,
height=256,
bbox=None,
):
image = image.numpy()
if mask is not None:
mask = mask.numpy()
if bbox is not None:
x, y, width, height = bbox
cropped_image = image[:, y : y + height, x : x + width, :]
cropped_mask = None
if mask is not None:
cropped_mask = (
mask[:, y : y + height, x : x + width]
if mask is not None
else None
)
crop_data = (x, y, width, height)
return (
torch.from_numpy(cropped_image),
torch.from_numpy(cropped_mask)
if cropped_mask is not None
else None,
crop_data,
)
# def calculate_intersection(rect1, rect2):
# x_left = max(rect1[0], rect2[0])
# y_top = max(rect1[1], rect2[1])
# x_right = min(rect1[2], rect2[2])
# y_bottom = min(rect1[3], rect2[3])
# return (x_left, y_top, x_right, y_bottom)
def bbox_check(bbox, target_size=None):
if not target_size:
return bbox
new_bbox = (
bbox[0],
bbox[1],
min(target_size[0] - bbox[0], bbox[2]),
min(target_size[1] - bbox[1], bbox[3]),
)
if new_bbox != bbox:
log.warn(f"BBox too big, constrained to {new_bbox}")
return new_bbox
def bbox_to_region(bbox, target_size=None):
bbox = bbox_check(bbox, target_size)
# to region
return (bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3])
class MTB_Uncrop:
"""Uncrops an image to a given bounding box
The bounding box can be given as a tuple of (x, y, width, height) or as a BBOX type
The BBOX input takes precedence over the tuple input
"""
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"crop_image": ("IMAGE",),
"bbox": ("BBOX",),
"border_blending": (
"FLOAT",
{"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01},
),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "do_crop"
CATEGORY = "mtb/crop"
def do_crop(self, image, crop_image, bbox, border_blending):
def inset_border(image, border_width=20, border_color=(0)):
width, height = image.size
bordered_image = Image.new(
image.mode, (width, height), border_color
)
bordered_image.paste(image, (0, 0))
draw = ImageDraw.Draw(bordered_image)
draw.rectangle(
(0, 0, width - 1, height - 1),
outline=border_color,
width=border_width,
)
return bordered_image
single = image.size(0) == 1
if image.size(0) != crop_image.size(0):
if not single:
raise ValueError(
"The Image batch count is greater than 1, but doesn't match the crop_image batch count. If using batches they should either match or only crop_image must be greater than 1"
)
images = tensor2pil(image)
crop_imgs = tensor2pil(crop_image)
out_images = []
for i, crop in enumerate(crop_imgs):
if single:
img = images[0]
else:
img = images[i]
# uncrop the image based on the bounding box
bb_x, bb_y, bb_width, bb_height = bbox
paste_region = bbox_to_region(
(bb_x, bb_y, bb_width, bb_height), img.size
)
# log.debug(f"Paste region: {paste_region}")
# new_region = adjust_paste_region(img.size, paste_region)
# log.debug(f"Adjusted paste region: {new_region}")
# # Check if the adjusted paste region is different from the original
crop_img = crop.convert("RGB")
log.debug(f"Crop image size: {crop_img.size}")
log.debug(f"Image size: {img.size}")
if border_blending > 1.0:
border_blending = 1.0
elif border_blending < 0.0:
border_blending = 0.0
blend_ratio = (max(crop_img.size) / 2) * float(border_blending)
blend = img.convert("RGBA")
mask = Image.new("L", img.size, 0)
mask_block = Image.new("L", (bb_width, bb_height), 255)
mask_block = inset_border(mask_block, int(blend_ratio / 2), (0))
mask.paste(mask_block, paste_region)
log.debug(f"Blend size: {blend.size} | kind {blend.mode}")
log.debug(
f"Crop image size: {crop_img.size} | kind {crop_img.mode}"
)
log.debug(f"BBox: {paste_region}")
blend.paste(crop_img, paste_region)
mask = mask.filter(ImageFilter.BoxBlur(radius=blend_ratio / 4))
mask = mask.filter(
ImageFilter.GaussianBlur(radius=blend_ratio / 4)
)
blend.putalpha(mask)
img = Image.alpha_composite(img.convert("RGBA"), blend)
out_images.append(img.convert("RGB"))
return (pil2tensor(out_images),)
__nodes__ = [
MTB_BboxFromMask,
MTB_Bbox,
MTB_Crop,
MTB_Uncrop,
MTB_SplitBbox,
MTB_UpscaleBboxBy,
]