Spaces:
ginipick
/
Running on Zero

multimodalart's picture
Squashing commit
4450790 verified
raw
history blame
31.2 kB
import contextlib
import functools
import importlib
import math
import os
import shlex
import shutil
import socket
import subprocess
import sys
import uuid
from collections.abc import Callable, Sequence
from enum import Enum
from pathlib import Path
from typing import TypeVar
import folder_paths
import numpy as np
import numpy.typing as npt
import requests
import torch
from PIL import Image
from .install import pip_map
try:
from .log import log
except ImportError:
try:
from log import log
log.warn("Imported log without relative path")
except ImportError:
import logging
log = logging.getLogger("comfy mtb utils")
log.warn("[comfy mtb] You probably called the file outside a module.")
# region SANITY_CHECK Utilities
def make_report():
pass
# endregion
# region NFOV
class numpy_NFOV:
def __init__(self, fov=None, height: int = 400, width: int = 800):
self.field_of_view = fov or [0.45, 0.45]
self.PI = np.pi
self.PI_2 = np.pi * 0.5
self.PI2 = np.pi * 2.0
self.height = height
self.width = width
self.screen_points = self._get_screen_img()
def _get_coord_rad(self, is_center_point, center_point=None):
if is_center_point:
center_point = np.array(center_point)
return (center_point * 2 - 1) * np.array([self.PI, self.PI_2])
else:
return (
(self.screen_points * 2 - 1)
* np.array([self.PI, self.PI_2])
* (np.ones(self.screen_points.shape) * self.field_of_view)
)
def _get_screen_img(self):
xx, yy = np.meshgrid(
np.linspace(0, 1, self.width), np.linspace(0, 1, self.height)
)
return np.array([xx.ravel(), yy.ravel()]).T
def _calc_spherical_to_gnomonic(self, converted_screen_coord):
x = converted_screen_coord.T[0]
y = converted_screen_coord.T[1]
rou = np.sqrt(x**2 + y**2)
c = np.arctan(rou)
sin_c = np.sin(c)
cos_c = np.cos(c)
lat = np.arcsin(
cos_c * np.sin(self.cp[1]) + (y * sin_c * np.cos(self.cp[1])) / rou
)
lon = self.cp[0] + np.arctan2(
x * sin_c,
rou * np.cos(self.cp[1]) * cos_c - y * np.sin(self.cp[1]) * sin_c,
)
lat = (lat / self.PI_2 + 1.0) * 0.5
lon = (lon / self.PI + 1.0) * 0.5
return np.array([lon, lat]).T
def _bilinear_interpolation(self, screen_coord):
uf = np.mod(screen_coord.T[0], 1) * self.frame_width # long - width
vf = np.mod(screen_coord.T[1], 1) * self.frame_height # lat - height
x0 = np.floor(uf).astype(int) # coord of pixel to bottom left
y0 = np.floor(vf).astype(int)
x2 = np.add(
x0, np.ones(uf.shape).astype(int)
) # coords of pixel to top right
y2 = np.add(y0, np.ones(vf.shape).astype(int))
base_y0 = np.multiply(y0, self.frame_width)
base_y2 = np.multiply(y2, self.frame_width)
A_idx = np.add(base_y0, x0)
B_idx = np.add(base_y2, x0)
C_idx = np.add(base_y0, x2)
D_idx = np.add(base_y2, x2)
flat_img = np.reshape(self.frame, [-1, self.frame_channel])
A = np.take(flat_img, A_idx, axis=0)
B = np.take(flat_img, B_idx, axis=0)
C = np.take(flat_img, C_idx, axis=0)
D = np.take(flat_img, D_idx, axis=0)
wa = np.multiply(x2 - uf, y2 - vf)
wb = np.multiply(x2 - uf, vf - y0)
wc = np.multiply(uf - x0, y2 - vf)
wd = np.multiply(uf - x0, vf - y0)
# interpolate
AA = np.multiply(A, np.array([wa, wa, wa]).T)
BB = np.multiply(B, np.array([wb, wb, wb]).T)
CC = np.multiply(C, np.array([wc, wc, wc]).T)
DD = np.multiply(D, np.array([wd, wd, wd]).T)
nfov = np.reshape(
np.round(AA + BB + CC + DD).astype(np.uint8),
[self.height, self.width, 3],
)
return nfov
def to_nfov(self, frame, center_point):
self.frame = frame
self.frame_height = frame.shape[0]
self.frame_width = frame.shape[1]
self.frame_channel = frame.shape[2]
self.cp = self._get_coord_rad(
center_point=center_point, is_center_point=True
)
converted_screen_coord = self._get_coord_rad(is_center_point=False)
return self._bilinear_interpolation(
self._calc_spherical_to_gnomonic(converted_screen_coord)
)
# endregion
# region SERVER Utilities
class IPChecker:
def __init__(self):
self.ips = list(self.get_local_ips())
log.debug(f"Found {len(self.ips)} local ips")
self.checked_ips: set[str] = set()
def get_working_ip(self, test_url_template: str):
for ip in self.ips:
if ip not in self.checked_ips:
self.checked_ips.add(ip)
test_url = test_url_template.format(ip)
if self._test_url(test_url):
return ip
return None
@staticmethod
def get_local_ips(prefix: str = "192.168."):
hostname = socket.gethostname()
log.debug(f"Getting local ips for {hostname}")
for info in socket.getaddrinfo(hostname, None):
# Filter out IPv6 addresses if you only want IPv4
log.debug(info)
# if info[1] == socket.SOCK_STREAM and
if info[0] == socket.AF_INET and info[4][0].startswith(prefix):
yield info[4][0]
def _test_url(self, url: str):
try:
response = requests.get(url, timeout=10)
return response.status_code == 200
except Exception:
return False
@functools.lru_cache(maxsize=1)
def get_server_info():
from comfy.cli_args import args
ip_checker = IPChecker()
base_url: str = args.listen
if base_url == "0.0.0.0":
log.debug("Server set to 0.0.0.0, we will try to resolve the host IP")
base_url = ip_checker.get_working_ip(
f"http://{{}}:{args.port}/history"
)
log.debug(f"Setting ip to {base_url}")
return (base_url, args.port)
# endregion
# region MISC Utilities
# TODO: use mtb.core directly instead of copying parts here
T = TypeVar("T", bound="StringConvertibleEnum")
class StringConvertibleEnum(Enum):
"""Base class for enums with utility methods for string conversion and member listing."""
@classmethod
def from_str(cls: type[T], label: str | T) -> T:
"""
Convert a string to the corresponding enum value (case sensitive).
Args:
label (Union[str, T]): The string or enum value to convert.
Returns
-------
T: The corresponding enum value.
Raises
------
ValueError: If the label does not correspond to any enum member.
"""
if isinstance(label, cls):
return label
if isinstance(label, str):
# from key
if label in cls.__members__:
return cls[label]
for member in cls:
if member.value == label:
return member
raise ValueError(
f"Unknown label: '{label}'. Valid members: {list(cls.__members__.keys())}, "
f"valid values: {cls.list_members()}"
)
@classmethod
def to_str(cls: type[T], enum_value: T) -> str:
"""
Convert an enum value to its string representation.
Args:
enum_value (T): The enum value to convert.
Returns
-------
str: The string representation of the enum value.
Raises
------
ValueError: If the enum value is invalid.
"""
if isinstance(enum_value, cls):
return enum_value.value
raise ValueError(f"Invalid Enum: {enum_value}")
@classmethod
def list_members(cls: type[T]) -> list[str]:
"""
Return a list of string representations of all enum members.
Returns
-------
List[str]: List of all enum member values.
"""
return [enum.value for enum in cls]
def __str__(self) -> str:
"""
Returns the string representation of the enum value.
Returns
-------
str: The string representation of the enum value.
"""
return self.value
class Precision(StringConvertibleEnum):
FULL = "full"
FP32 = "fp32"
FP16 = "fp16"
BF16 = "bf16"
FP8 = "fp8"
def to_dtype(self):
match self:
case Precision.FP32 | Precision.FULL:
return torch.float32
case Precision.FP16:
return torch.float16
case Precision.BF16:
return torch.bfloat16
case Precision.FP8:
return torch.float8_e4m3fn
class Operation(StringConvertibleEnum):
COPY = "copy"
CONVERT = "convert"
DELETE = "delete"
def backup_file(
fp: Path,
target: Path | None = None,
backup_dir: str = ".bak",
suffix: str | None = None,
prefix: str | None = None,
):
if not fp.exists():
raise FileNotFoundError(f"No file found at {fp}")
backup_directory = target or fp.parent / backup_dir
backup_directory.mkdir(parents=True, exist_ok=True)
stem = fp.stem
if suffix or prefix:
new_stem = f"{prefix or ''}{stem}{suffix or ''}"
else:
new_stem = f"{stem}_{uuid.uuid4()}"
backup_file_path = backup_directory / f"{new_stem}{fp.suffix}"
# Perform the backup
shutil.copy(fp, backup_file_path)
log.debug(f"File backed up to {backup_file_path}")
def hex_to_rgb(hex_color):
try:
hex_color = hex_color.lstrip("#")
return tuple(int(hex_color[i : i + 2], 16) for i in (0, 2, 4))
except ValueError:
log.error(f"Invalid hex color: {hex_color}")
return (0, 0, 0)
def add_path(path, prepend=False):
if isinstance(path, list):
for p in path:
add_path(p, prepend)
return
if isinstance(path, Path):
path = path.resolve().as_posix()
if path not in sys.path:
if prepend:
sys.path.insert(0, path)
else:
sys.path.append(path)
def run_command(cmd, ignored_lines_start=None):
if ignored_lines_start is None:
ignored_lines_start = []
if isinstance(cmd, str):
shell_cmd = cmd
elif isinstance(cmd, list):
shell_cmd = " ".join(
arg.as_posix() if isinstance(arg, Path) else shlex.quote(str(arg))
for arg in cmd
)
else:
raise ValueError(
"Invalid 'cmd' argument. It must be a string or a list of arguments."
)
try:
_run_command(shell_cmd, ignored_lines_start)
except subprocess.CalledProcessError as e:
print(
f"Command failed with return code: {e.returncode}", file=sys.stderr
)
print(e.stderr.strip(), file=sys.stderr)
except KeyboardInterrupt:
print("Command execution interrupted.")
def _run_command(shell_cmd, ignored_lines_start):
log.debug(f"Running {shell_cmd}")
result = subprocess.run(
shell_cmd,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
shell=True,
check=True,
)
stdout_lines = result.stdout.strip().split("\n")
stderr_lines = result.stderr.strip().split("\n")
# Print stdout, skipping ignored lines
for line in stdout_lines:
if not any(line.startswith(ign) for ign in ignored_lines_start):
print(line)
# Print stderr
for line in stderr_lines:
print(line, file=sys.stderr)
print("Command executed successfully!")
def import_install(package_name):
package_spec = reqs_map.get(package_name, package_name)
try:
importlib.import_module(package_name)
except Exception: # (ImportError, ModuleNotFoundError):
run_command(
[
Path(sys.executable).as_posix(),
"-m",
"pip",
"install",
package_spec,
]
)
importlib.import_module(package_name)
# endregion
# region GLOBAL VARIABLES
# - detect mode
comfy_mode = None
if os.environ.get("COLAB_GPU"):
comfy_mode = "colab"
elif "python_embeded" in sys.executable:
comfy_mode = "embeded"
elif ".venv" in sys.executable:
comfy_mode = "venv"
# - Get the absolute path of the parent directory of the current script
here = Path(__file__).parent.absolute()
# - Construct the absolute path to the ComfyUI directory
comfy_dir = Path(folder_paths.base_path)
models_dir = Path(folder_paths.models_dir)
output_dir = Path(folder_paths.output_directory)
input_dir = Path(folder_paths.input_directory)
styles_dir = comfy_dir / "styles"
session_id = str(uuid.uuid4())
# - Construct the path to the font file
font_path = here / "data" / "font.ttf"
# - Add extern folder to path
extern_root = here / "extern"
add_path(extern_root)
for pth in extern_root.iterdir():
if pth.is_dir():
add_path(pth)
# - Add the ComfyUI directory and custom nodes path to the sys.path list
add_path(comfy_dir)
add_path(comfy_dir / "custom_nodes")
# TODO: use the requirements library
reqs_map = {value: key for key, value in pip_map.items()}
# NOTE: store already logged warnings to only alert once.
warned_messages: set[str] = set()
PIL_FILTER_MAP = {
"nearest": Image.Resampling.NEAREST,
"box": Image.Resampling.BOX,
"bilinear": Image.Resampling.BILINEAR,
"hamming": Image.Resampling.HAMMING,
"bicubic": Image.Resampling.BICUBIC,
"lanczos": Image.Resampling.LANCZOS,
}
# endregion
# region TENSOR Utilities
def to_numpy(image: torch.Tensor) -> npt.NDArray[np.uint8]:
"""Converts a tensor to a ndarray with proper scaling and type conversion."""
log.debug(f"Converting tensor to numpy array with shape {image.shape}")
np_array = np.clip(255.0 * image.cpu().numpy(), 0, 255).astype(np.uint8)
log.debug(f"Numpy array shape after conversion: {np_array.shape}")
return np_array
def handle_batch(
tensor: torch.Tensor,
func: Callable[[torch.Tensor], Image.Image | npt.NDArray[np.uint8]],
) -> list[Image.Image] | list[npt.NDArray[np.uint8]]:
"""Handles batch processing for a given tensor and conversion function."""
return [func(tensor[i]) for i in range(tensor.shape[0])]
def tensor2pil(tensor: torch.Tensor) -> list[Image.Image]:
"""Converts a batch of tensors to a list of PIL Images."""
def single_tensor2pil(t: torch.Tensor) -> Image.Image:
np_array = to_numpy(t)
if np_array.ndim == 2: # (H, W) for masks
return Image.fromarray(np_array, mode="L")
elif np_array.ndim == 3: # (H, W, C) for RGB/RGBA
if np_array.shape[2] == 3:
return Image.fromarray(np_array, mode="RGB")
elif np_array.shape[2] == 4:
return Image.fromarray(np_array, mode="RGBA")
raise ValueError(f"Invalid tensor shape: {t.shape}")
return handle_batch(tensor, single_tensor2pil)
def pil2tensor(images: Image.Image | list[Image.Image]) -> torch.Tensor:
"""Converts a PIL Image or a list of PIL Images to a tensor."""
def single_pil2tensor(image: Image.Image) -> torch.Tensor:
np_image = np.array(image).astype(np.float32) / 255.0
if np_image.ndim == 2: # Grayscale
return torch.from_numpy(np_image).unsqueeze(0) # (1, H, W)
else: # RGB or RGBA
return torch.from_numpy(np_image).unsqueeze(0) # (1, H, W, C)
if isinstance(images, Image.Image):
return single_pil2tensor(images)
else:
return torch.cat([single_pil2tensor(img) for img in images], dim=0)
def np2tensor(
np_array: npt.NDArray[np.float32] | Sequence[npt.NDArray[np.float32]],
) -> torch.Tensor:
"""Converts a NumPy array or a list of NumPy arrays to a tensor."""
def single_np2tensor(array: npt.NDArray[np.float32]) -> torch.Tensor:
if array.ndim == 2: # (H, W) for masks
return torch.from_numpy(
array.astype(np.float32) / 255.0
).unsqueeze(0) # (1, H, W)
elif array.ndim == 3: # (H, W, C) for RGB/RGBA
return torch.from_numpy(
array.astype(np.float32) / 255.0
).unsqueeze(0) # (1, H, W, C)
raise ValueError(f"Invalid array shape: {array.shape}")
if isinstance(np_array, np.ndarray):
return single_np2tensor(np_array)
else:
return torch.cat([single_np2tensor(arr) for arr in np_array], dim=0)
def tensor2np(tensor: torch.Tensor) -> list[npt.NDArray[np.uint8]]:
"""Converts a batch of tensors to a list of NumPy arrays."""
def single_tensor2np(t: torch.Tensor) -> npt.NDArray[np.uint8]:
t = t.squeeze() # Remove any singleton dimensions
if t.ndim == 2: # (H, W) for masks
return to_numpy(t)
elif t.ndim == 3: # (C, H, W) for RGB/RGBA
if t.shape[0] in [1, 3, 4]: # Channel-first format
t = t.permute(1, 2, 0)
return to_numpy(t)
else:
raise ValueError(f"Invalid tensor shape: {t.shape}")
return handle_batch(tensor, single_tensor2np)
def pad(img, left, right, top, bottom):
pad_width = np.array(((0, 0), (top, bottom), (left, right)))
print(
f"pad_width: {pad_width}, shape: {pad_width.shape}"
) # Debugging line
return np.pad(img, pad_width, mode="wrap")
def tiles_infer(tiles, ort_session, progress_callback=None):
"""Infer each tile with the given model. progress_callback will be called with
arguments : current tile idx and total tiles amount (used to show progress on
cursor in Blender).
"""
out_channels = 3 # normal map RGB channels
tiles_nb = tiles.shape[0]
pred_tiles = np.empty(
(tiles_nb, out_channels, tiles.shape[2], tiles.shape[3])
)
for i in range(tiles_nb):
if progress_callback != None:
progress_callback(i + 1, tiles_nb)
pred_tiles[i] = ort_session.run(
None, {"input": tiles[i : i + 1].astype(np.float32)}
)[0]
return pred_tiles
def generate_mask(tile_size, stride_size):
"""Generates a pyramidal-like mask. Used for mixing overlapping predicted tiles."""
tile_h, tile_w = tile_size
stride_h, stride_w = stride_size
ramp_h = tile_h - stride_h
ramp_w = tile_w - stride_w
mask = np.ones((tile_h, tile_w))
# ramps in width direction
mask[ramp_h:-ramp_h, :ramp_w] = np.linspace(0, 1, num=ramp_w)
mask[ramp_h:-ramp_h, -ramp_w:] = np.linspace(1, 0, num=ramp_w)
# ramps in height direction
mask[:ramp_h, ramp_w:-ramp_w] = np.transpose(
np.linspace(0, 1, num=ramp_h)[None], (1, 0)
)
mask[-ramp_h:, ramp_w:-ramp_w] = np.transpose(
np.linspace(1, 0, num=ramp_h)[None], (1, 0)
)
# Assume tiles are squared
assert ramp_h == ramp_w
# top left corner
corner = np.rot90(corner_mask(ramp_h), 2)
mask[:ramp_h, :ramp_w] = corner
# top right corner
corner = np.flip(corner, 1)
mask[:ramp_h, -ramp_w:] = corner
# bottom right corner
corner = np.flip(corner, 0)
mask[-ramp_h:, -ramp_w:] = corner
# bottom right corner
corner = np.flip(corner, 1)
mask[-ramp_h:, :ramp_w] = corner
return mask
def corner_mask(side_length):
"""Generates the corner part of the pyramidal-like mask.
Currently, only for square shapes.
"""
corner = np.zeros([side_length, side_length])
for h in range(0, side_length):
for w in range(0, side_length):
if h >= w:
sh = h / (side_length - 1)
corner[h, w] = 1 - sh
if h <= w:
sw = w / (side_length - 1)
corner[h, w] = 1 - sw
return corner - 0.25 * scaling_mask(side_length)
def scaling_mask(side_length):
scaling = np.zeros([side_length, side_length])
for h in range(0, side_length):
for w in range(0, side_length):
sh = h / (side_length - 1)
sw = w / (side_length - 1)
if h >= w and h <= side_length - w:
scaling[h, w] = sw
if h <= w and h <= side_length - w:
scaling[h, w] = sh
if h >= w and h >= side_length - w:
scaling[h, w] = 1 - sh
if h <= w and h >= side_length - w:
scaling[h, w] = 1 - sw
return 2 * scaling
def tiles_merge(tiles, stride_size, img_size, paddings):
"""Merges the list of tiles into one image. img_size is the original size, before
padding.
"""
_, tile_h, tile_w = tiles[0].shape
pad_left, pad_right, pad_top, pad_bottom = paddings
height = img_size[1] + pad_top + pad_bottom
width = img_size[2] + pad_left + pad_right
stride_h, stride_w = stride_size
# stride must be even
assert (stride_h % 2 == 0) and (stride_w % 2 == 0)
# stride must be greater or equal than half tile
assert (stride_h >= tile_h / 2) and (stride_w >= tile_w / 2)
# stride must be smaller or equal tile size
assert (stride_h <= tile_h) and (stride_w <= tile_w)
merged = np.zeros((img_size[0], height, width))
mask = generate_mask((tile_h, tile_w), stride_size)
h_range = ((height - tile_h) // stride_h) + 1
w_range = ((width - tile_w) // stride_w) + 1
idx = 0
for h in range(0, h_range):
for w in range(0, w_range):
h_from, h_to = h * stride_h, h * stride_h + tile_h
w_from, w_to = w * stride_w, w * stride_w + tile_w
merged[:, h_from:h_to, w_from:w_to] += tiles[idx] * mask
idx += 1
return merged[:, pad_top:-pad_bottom, pad_left:-pad_right]
def tiles_split(img, tile_size, stride_size):
"""Returns list of tiles from the given image and the padding used to fit the tiles
in it. Input image must have dimension C,H,W.
"""
log.debug(f"Splitting img: tile {tile_size}, stride {stride_size} ")
tile_h, tile_w = tile_size
stride_h, stride_w = stride_size
img_h, img_w = img.shape[0], img.shape[1]
# stride must be even
assert (stride_h % 2 == 0) and (stride_w % 2 == 0)
# stride must be greater or equal than half tile
assert (stride_h >= tile_h / 2) and (stride_w >= tile_w / 2)
# stride must be smaller or equal tile size
assert (stride_h <= tile_h) and (stride_w <= tile_w)
# find total height & width padding sizes
pad_h, pad_w = 0, 0
remainer_h = (img_h - tile_h) % stride_h
remainer_w = (img_w - tile_w) % stride_w
if remainer_h != 0:
pad_h = stride_h - remainer_h
if remainer_w != 0:
pad_w = stride_w - remainer_w
# if tile bigger than image, pad image to tile size
if tile_h > img_h:
pad_h = tile_h - img_h
if tile_w > img_w:
pad_w = tile_w - img_w
# pad image, add extra stride to padding to avoid pyramid
# weighting leaking onto the valid part of the picture
pad_left = pad_w // 2 + stride_w
pad_right = pad_left if pad_w % 2 == 0 else pad_left + 1
pad_top = pad_h // 2 + stride_h
pad_bottom = pad_top if pad_h % 2 == 0 else pad_top + 1
img = pad(img, pad_left, pad_right, pad_top, pad_bottom)
img_h, img_w = img.shape[1], img.shape[2]
# extract tiles
h_range = ((img_h - tile_h) // stride_h) + 1
w_range = ((img_w - tile_w) // stride_w) + 1
tiles = np.empty([h_range * w_range, img.shape[0], tile_h, tile_w])
idx = 0
for h in range(0, h_range):
for w in range(0, w_range):
h_from, h_to = h * stride_h, h * stride_h + tile_h
w_from, w_to = w * stride_w, w * stride_w + tile_w
tiles[idx] = img[:, h_from:h_to, w_from:w_to]
idx += 1
return tiles, (pad_left, pad_right, pad_top, pad_bottom)
# endregion
# region MODEL Utilities
def download_antelopev2():
antelopev2_url = (
"https://drive.google.com/uc?id=18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8"
)
try:
import gdown
log.debug("Loading antelopev2 model")
dest = get_model_path("insightface")
archive = dest / "antelopev2.zip"
final_path = dest / "models" / "antelopev2"
if not final_path.exists():
log.info(f"antelopev2 not found, downloading to {dest}")
gdown.download(
antelopev2_url,
archive.as_posix(),
resume=True,
)
log.info(f"Unzipping antelopev2 to {final_path}")
if archive.exists():
# we unzip it
import zipfile
with zipfile.ZipFile(archive.as_posix(), "r") as zip_ref:
zip_ref.extractall(final_path.parent.as_posix())
except Exception as e:
log.error(
f"Could not load or download antelopev2 model, download it manually from {antelopev2_url}"
)
raise e
def get_model_path(fam, model=None):
log.debug(f"Requesting {fam} with model {model}")
res = None
if model:
res = folder_paths.get_full_path(fam, model)
else:
# this one can raise errors...
with contextlib.suppress(KeyError):
res = folder_paths.get_folder_paths(fam)
if res:
if isinstance(res, list):
if len(res) > 1:
warn_msg = f"Found multiple match, we will pick the last {res[-1]}\n{res}"
if warn_msg not in warned_messages:
log.info(warn_msg)
warned_messages.add(warn_msg)
res = res[-1]
res = Path(res)
log.debug(f"Resolved model path from folder_paths: {res}")
else:
res = models_dir / fam
if model:
res /= model
return res
# endregion
# region UV Utilities
def create_uv_map_tensor(width=512, height=512):
u = torch.linspace(0.0, 1.0, steps=width)
v = torch.linspace(0.0, 1.0, steps=height)
U, V = torch.meshgrid(u, v)
uv_map = torch.zeros(height, width, 3, dtype=torch.float32)
uv_map[:, :, 0] = U.t()
uv_map[:, :, 1] = V.t()
return uv_map.unsqueeze(0)
# endregion
# region ANIMATION Utilities
EASINGS = [
"Linear",
"Sine In",
"Sine Out",
"Sine In/Out",
"Quart In",
"Quart Out",
"Quart In/Out",
"Cubic In",
"Cubic Out",
"Cubic In/Out",
"Circ In",
"Circ Out",
"Circ In/Out",
"Back In",
"Back Out",
"Back In/Out",
"Elastic In",
"Elastic Out",
"Elastic In/Out",
"Bounce In",
"Bounce Out",
"Bounce In/Out",
]
def apply_easing(value, easing_type):
if easing_type == "Linear":
return value
# Back easing functions
def easeInBack(t):
s = 1.70158
return t * t * ((s + 1) * t - s)
def easeOutBack(t):
s = 1.70158
return ((t - 1) * t * ((s + 1) * t + s)) + 1
def easeInOutBack(t):
s = 1.70158 * 1.525
if t < 0.5:
return (t * t * (t * (s + 1) - s)) * 2
return ((t - 2) * t * ((s + 1) * t + s) + 2) * 2
# Elastic easing functions
def easeInElastic(t):
if t == 0:
return 0
if t == 1:
return 1
p = 0.3
s = p / 4
return -(
math.pow(2, 10 * (t - 1))
* math.sin((t - 1 - s) * (2 * math.pi) / p)
)
def easeOutElastic(t):
if t == 0:
return 0
if t == 1:
return 1
p = 0.3
s = p / 4
return math.pow(2, -10 * t) * math.sin((t - s) * (2 * math.pi) / p) + 1
def easeInOutElastic(t):
if t == 0:
return 0
if t == 1:
return 1
p = 0.3 * 1.5
s = p / 4
t = t * 2
if t < 1:
return -0.5 * (
math.pow(2, 10 * (t - 1))
* math.sin((t - 1 - s) * (2 * math.pi) / p)
)
return (
0.5
* math.pow(2, -10 * (t - 1))
* math.sin((t - 1 - s) * (2 * math.pi) / p)
+ 1
)
# Bounce easing functions
def easeInBounce(t):
return 1 - easeOutBounce(1 - t)
def easeOutBounce(t):
if t < (1 / 2.75):
return 7.5625 * t * t
elif t < (2 / 2.75):
t -= 1.5 / 2.75
return 7.5625 * t * t + 0.75
elif t < (2.5 / 2.75):
t -= 2.25 / 2.75
return 7.5625 * t * t + 0.9375
else:
t -= 2.625 / 2.75
return 7.5625 * t * t + 0.984375
def easeInOutBounce(t):
if t < 0.5:
return easeInBounce(t * 2) * 0.5
return easeOutBounce(t * 2 - 1) * 0.5 + 0.5
# Quart easing functions
def easeInQuart(t):
return t * t * t * t
def easeOutQuart(t):
t -= 1
return -(t**2 * t * t - 1)
def easeInOutQuart(t):
t *= 2
if t < 1:
return 0.5 * t * t * t * t
t -= 2
return -0.5 * (t**2 * t * t - 2)
# Cubic easing functions
def easeInCubic(t):
return t * t * t
def easeOutCubic(t):
t -= 1
return t**2 * t + 1
def easeInOutCubic(t):
t *= 2
if t < 1:
return 0.5 * t * t * t
t -= 2
return 0.5 * (t**2 * t + 2)
# Circ easing functions
def easeInCirc(t):
return -(math.sqrt(1 - t * t) - 1)
def easeOutCirc(t):
t -= 1
return math.sqrt(1 - t**2)
def easeInOutCirc(t):
t *= 2
if t < 1:
return -0.5 * (math.sqrt(1 - t**2) - 1)
t -= 2
return 0.5 * (math.sqrt(1 - t**2) + 1)
# Sine easing functions
def easeInSine(t):
return -math.cos(t * (math.pi / 2)) + 1
def easeOutSine(t):
return math.sin(t * (math.pi / 2))
def easeInOutSine(t):
return -0.5 * (math.cos(math.pi * t) - 1)
easing_functions = {
"Sine In": easeInSine,
"Sine Out": easeOutSine,
"Sine In/Out": easeInOutSine,
"Quart In": easeInQuart,
"Quart Out": easeOutQuart,
"Quart In/Out": easeInOutQuart,
"Cubic In": easeInCubic,
"Cubic Out": easeOutCubic,
"Cubic In/Out": easeInOutCubic,
"Circ In": easeInCirc,
"Circ Out": easeOutCirc,
"Circ In/Out": easeInOutCirc,
"Back In": easeInBack,
"Back Out": easeOutBack,
"Back In/Out": easeInOutBack,
"Elastic In": easeInElastic,
"Elastic Out": easeOutElastic,
"Elastic In/Out": easeInOutElastic,
"Bounce In": easeInBounce,
"Bounce Out": easeOutBounce,
"Bounce In/Out": easeInOutBounce,
}
function_ease = easing_functions.get(easing_type)
if function_ease:
return function_ease(value)
log.error(f"Unknown easing type: {easing_type}")
log.error(f"Available easing types: {list(easing_functions.keys())}")
raise ValueError(f"Unknown easing type: {easing_type}")
# endregion